The effects of geometry and fiber bundle orientation on the finite element modeling of the anterior cruciate ligament

Author(s):  
Xiaoyan Zhang ◽  
Changfu Wu ◽  
Guotai Jiang ◽  
Savio L-Y. Woo
2016 ◽  
Vol 48 ◽  
pp. 888 ◽  
Author(s):  
Edward Nyman ◽  
Marcel L. Ingels ◽  
Amirhesam Amerinatanzi ◽  
Rodney K. Summers ◽  
Timothy E. Hewett ◽  
...  

2021 ◽  
Author(s):  
Konstantinos Risvas ◽  
Dimitar Stanev ◽  
Lefteris Benos ◽  
Konstantinos Filip ◽  
Dimitrios Tsaopoulos ◽  
...  

Abstract Anterior Cruciate Ligament (ACL) tear is one of the most common knee injuries. The ACL reconstruction surgery aims to restore healthy knee function by replacing the injured ligament with a graft. Proper selection of the optimal surgery parameters is a complex task. To this end, we developed an automated modeling framework that accepts subject-specific geometries and produces finite element knee models incorporating different surgical techniques. Initially, we developed a reference model of the intact knee, validated with data provided by the OpenKnee project. This helped us evaluate the effectiveness of estimating ligament stiffness directly from MRI. Next, we performed a plethora of “what-if” simulations, comparing responses with the reference model. We found that a) increasing graft pretension and radius reduces relative knee displacement, b) the correlation of graft radius and tension should not be neglected, c) graft fixation angle of 20 degrees can reduce knee laxity, and d) single-versus double-bundle techniques demonstrate comparable performance in restraining knee translation. In most cases, these findings confirm reported values from comparative clinical studies. The numerical models are made publicly available, allowing for experimental reuse and lowering the barriers for meta-studies. The modeling approach proposed here can complement orthopedic surgeons in their decision-making.


2020 ◽  
Vol 20 ◽  
pp. 25-30
Author(s):  
Jonquil R. Mau ◽  
Kevin M. Hawkins ◽  
Savio L.-Y. Woo ◽  
Kwang E. Kim ◽  
Matthew B.A. McCullough

2012 ◽  
Vol 626 ◽  
pp. 896-901
Author(s):  
A.H. Alafiah ◽  
M. Normahira ◽  
M.N. Anas

Anterior Cruciate Ligament (ACL) is of the major knee ligament. A three dimensional model that reflects the geometric characteristics of the human ACL developed to explore and analyze finite element parameters such as contact pressure and stress distribution on ACL in response to complex loading conditions. Moreover, various cases studied such as cases involving and uninvolving ligament in order to obtain and analyze the stress and contact pressure relationship between ACL, meniscus and cartilage. It is known that the contact and friction caused by the ACL wrapping around the bone during knee motion played the role of transferring the force from the ACL to the bone, and had a direct effect on the stress distribution of the ACL. Thus, the project lead to better understand the mechanism of injury, to improve the design of ACL reconstruction using suitable material and optimizing rehabilitation protocols by investigation of contact pressure with and without ACL.


Sign in / Sign up

Export Citation Format

Share Document