A fast architecture using CORDIC for simultaneous calculation of Hankel transforms

Author(s):  
Amitava Ghosh ◽  
Uttaran De ◽  
Vivek Chaurasia ◽  
Zahid Iqbal ◽  
Zainab Sultan
Keyword(s):  
1956 ◽  
Vol 9 (3) ◽  
pp. 128-131
Author(s):  
A. G. Mackie

In his book on Hydrodynamics, Lamb obtained a solution for the potential flow of an incompressible fluid through a circular hole in a plane wall. More recently Sneddon (Fourier Transforms, New York, 1951) obtained Lamb's solution by an elegant application of Hankel transforms.Since the streamlines in this solution are symmetric about the wall, it is not of particular physical interest. In this note, Sneddon's method is used to give a solution in which the fluid is infinite in extent on one side of the aperture but issues as a jet of finite diameter on the other side.


1962 ◽  
Vol 5 (3) ◽  
pp. 114-115 ◽  
Author(s):  
B. R. Bhonsle

The Laplace transform of a function f(t) ∈ L(0, ∞) is defined by the equationand its Hankel transform of order v is defined by the equationThe object of this note is to obtain a relation between the Laplace transform of tμf(t) and the Hankel transform of f(t), when ℛ(μ) > − 1. The result is stated in the form of a theorem which is then illustrated by an example.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Manoj P. Tripathi ◽  
B. P. Singh ◽  
Om P. Singh

A new stable algorithm, based on hat functions for numerical evaluation of Hankel transform of order ν>-1, is proposed in this paper. The hat basis functions are used as a basis to expand a part of the integrand, rf(r), appearing in the Hankel transform integral. This leads to a very simple, efficient, and stable algorithm for the numerical evaluation of Hankel transform. The novelty of our paper is that we give error and stability analysis of the algorithm and corroborate our theoretical findings by various numerical experiments. Finally, an application of the proposed algorithm is given for solving the heat equation in an infinite cylinder with a radiation condition.


Author(s):  
Moustafa El-Shahed ◽  
Ahmed Salem

In this paper, we present a general Inodel of the classical Navier-Stokes equations. With the help of Laplace, Fourier Sine transforms, finite Fourier Sine transforms, and finite Hankel transforms, an exact solutions for three different special cases have been obtained.


Sign in / Sign up

Export Citation Format

Share Document