Mapping urban landcover using the bidirectional reflectance distribution function BRDF/albedo product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

Author(s):  
C.N.H. Doll ◽  
J.-P. Muller ◽  
C. Schaaf ◽  
A.H. Strahler ◽  
Feng Gao
2021 ◽  
Vol 18 (2) ◽  
pp. 621-635
Author(s):  
Jan Pisek ◽  
Angela Erb ◽  
Lauri Korhonen ◽  
Tobias Biermann ◽  
Arnaud Carrara ◽  
...  

Abstract. Information about forest background reflectance is needed for accurate biophysical parameter retrieval from forest canopies (overstory) with remote sensing. Separating under- and overstory signals would enable more accurate modeling of forest carbon and energy fluxes. We retrieved values of the normalized difference vegetation index (NDVI) of the forest understory with the multi-angular Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo data (gridded 500 m daily Collection 6 product), using a method originally developed for boreal forests. The forest floor background reflectance estimates from the MODIS data were compared with in situ understory reflectance measurements carried out at an extensive set of forest ecosystem experimental sites across Europe. The reflectance estimates from MODIS data were, hence, tested across diverse forest conditions and phenological phases during the growing season to examine their applicability for ecosystems other than boreal forests. Here we report that the method can deliver good retrievals, especially over different forest types with open canopies (low foliage cover). The performance of the method was found to be limited over forests with closed canopies (high foliage cover), where the signal from understory becomes too attenuated. The spatial heterogeneity of individual field sites and the limitations and documented quality of the MODIS BRDF product are shown to be important for the correct assessment and validation of the retrievals obtained with remote sensing.


2017 ◽  
Vol 11 (4) ◽  
pp. 1575-1589 ◽  
Author(s):  
John Faulkner Burkhart ◽  
Arve Kylling ◽  
Crystal B. Schaaf ◽  
Zhuosen Wang ◽  
Wiley Bogren ◽  
...  

Abstract. Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300–920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.


Sign in / Sign up

Export Citation Format

Share Document