visible spectrum
Recently Published Documents


TOTAL DOCUMENTS

1729
(FIVE YEARS 519)

H-INDEX

65
(FIVE YEARS 12)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Timotej Turk Dermastia ◽  
Sonia Dall’Ara ◽  
Jožica Dolenc ◽  
Patricija Mozetič

Diatoms of the genus Pseudo-nitzschia H.Peragallo are known to produce domoic acid (DA), a toxin involved in amnesic shellfish poisoning (ASP). Strains of the same species are often classified as both toxic and nontoxic, and it is largely unknown whether this difference is also genetic. In the Northern Adriatic Sea, there are virtually no cases of ASP, but DA occasionally occurs in shellfish samples. So far, three species—P. delicatissima (Cleve) Heiden, P. multistriata (H. Takano) H. Takano, and P. calliantha Lundholm, Moestrup, & Hasle—have been identified as producers of DA in the Adriatic Sea. By means of enzme-linked immunosorbent assay (ELISA), high-performance liquid chromatography with UV and visible spectrum detection (HPLC-UV/VIS), and liquid chromatography with tandem mass spectrometry (LC-MS/MS), we reconfirmed the presence of DA in P. multistriata and P. delicatissima and detect for the first time in the Adriatic Sea DA in P. galaxiae Lundholm, & Moestrup. Furthermore, we attempted to answer the question of the distribution of DA production among Pseudo-nitzschia species and strains by sequencing the internal transcribed spacer (ITS) phylogenetic marker and the dabA DA biosynthesis gene and coupling this with toxicity data. Results show that all subclades of the Pseudo-nitzschia genus contain toxic species and that toxicity appears to be strain dependent, often with geographic partitioning. Amplification of dabA was successful only in toxic strains of P. multistriata and the presence of the genetic architecture for DA production in non-toxic strains was thus not confirmed.


2022 ◽  
Author(s):  
Muhammad Amin Padhiar ◽  
Minqiang Wang ◽  
Yongqiang Ji ◽  
Zhi Yang ◽  
Arshad Saleem Bhatti

Abstract In recent years, significant progress has been made in the red and green perovskite quantum dots (PQDs) based light-emitting devices. However, a scarcity of blue-emitting devices that are extremely efficient precludes their research and development for optoelectronic applications. Taking advantage of tunable bandgaps of PQDs over the entire visible spectrum, herein we tune optical properties of CSPbBr3 by mixing Nd3+ trivalent lanthanide halide cations for blue light-emitting devices. The CsPbBr3 PQDs doped with Nd3+ trivalent lanthanide halide cations emitted strong photoemission from green into the blue region. By adjusting their doping concentration, a tunable wavelength from (515 nm) to (450 nm) was achieved with FWHM from (37.83 nm) to (16.6 nm). We simultaneously observed PL linewidth broadening thermal quenching of PL and the blue shift of the optical bandgap from temperature-dependent PL studies. The Nd3+ cations into CsPbBr3 PQDs more efficiently reduced non-radiative recombination. As a result of the efficient removal of defects from PQDs, the photoluminescence quantum yield (PLQY) has been significantly increased to 91% in the blue-emitting region. Significantly, Nd3+ PQDs exhibit excellent long-term stability against the external environment, including water, temperature, and ultraviolet light irradiation. Moreover, we successfully transformed Nd3+ doped PQDs into highly fluorescent nanocomposites. Incorporating these findings, we fabricate and test a stable blue light-emitting LED with EL emission at (462 nm), (475 nm), and successfully produce white light emission from Nd3+ doped nanocomposites with a CIE at (0.32, 0.34), respectively. The findings imply that low-cost Nd3+ doped perovskites may be attractive as light converters in LCDs with a broad color gamut.


Author(s):  
I Made Yuliara ◽  
Ni Nyoman Ratini ◽  
I Gde Antha Kasmawan

This study aims to analyze temporally the spectral reflectance of clove vegetation using Landsat 8 multitemporal imagery data in Buleleng district, Bali. The analysis method uses the conversion of raw data from Landsat 8 images to the spectral reflectance value at the Top of Atmosphere (TOA). This conversion scales back the pixel values ??of the Landsat 8 image in the visible spectrum, namely bands 2, 3, 4 and infrared bands 5, 6, and 7 into percentage units. The temporal analysis technique is carried out by grouping the time series of Landsat 8 image data for 1 period, in 2015, into 4 quarterly groups based on the acquisition time, namely Quarter I (January, February, March), Quarter II (April, May, June), Quarter III (July, August, September) and Quarter IV (October, November, December). The results showed that the graph pattern of the average percentage of spectral reflectance in each quarter was the same and in the infrared spectrum was greater than the visible spectrum. The average value of the largest spectral reflectance was found in the second Quarter which was acquired by band 5 of 28.143%, while the smallest in the first Quarter which was acquired by band 2 was 2.503%.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Nisar Ahmad ◽  
Fozia ◽  
Musarrat Jabeen ◽  
Zia Ul Haq ◽  
Ijaz Ahmad ◽  
...  

The silver nanoparticles (AgNPs) were synthesized via green synthesis approach using Euporbia serpens Kunth aqueous extract. The synthesized AgNPs were characterized by UV-visible spectroscopy and Furrier Transformer Infra-Red spectroscopy to justify the reduction and stabilization of AgNPs from its precursors. AgNPs characteristic absorption peak was observed at 420 nm in the UV-visible spectrum. The SEM and TEM analysis demonstrated the spherical shape of the synthesized nanoparticles with particle sizes ranging from 30 nm to 80 nm. FTIR transmission bands at 2920 cm-1, 1639 cm-1, 1410 cm-1, 3290 cm-1, and 1085 cm-1 were attributed to C-H, C=O, C-C, N-H, and C-N functional groups, respectively. XRD peaks could be attributed to (111), (200), (220), and (311) crystalline plane of the faced-centered cube (FCC) crystalline structure of the metallic silver nanoparticles. The AgNPs showed good antibacterial activity against all the tested bacteria at each concentration. The particles were found to be more active against Escherichia coli (E. coli) with 20 ± 06   mm and Salmonella typhi (S. typhi) with 18 ± 0.5   mm zone of inhibition in reference to standard antibiotic amoxicillin with 23 ± 0.3   mm and 20 ± 0.4   mm zone of inhibition, respectively. Moderate antifungal activities were observed against Candida albicans (C. albicans) and Alternaria alternata (A. alternata) with zone of inhibitions 16.5 mm and 15 mm, respectively, compared to the standard with 23 mm of inhibition. Insignificant antifungal inhibition of 7.5 mm was observed against Fusarium gramium (F. gramium). All the tested concentrations of AgNPs showed comparable % RSA with the standard reference ascorbic acid in the range sixty percent to seventy five percent. The percent motility at 3 hours postincubation showed quick response and most Tetramorium caespitum were found deceased or paralyzed. Similarly, the percent mortality showed a linear response at concentration and time. It was observed that 1 μg/mL to 2 μg/mL concentration of AgNPs displayed a significant cytotoxic activity against Artemia salina with LD50 of 5.37 and 5.82, respectively.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Ivan V. Nikiforov ◽  
Dina V. Deyneko ◽  
Dmitry А. Spassky ◽  
Bogdan I. Lazoryak ◽  
Sergey M. Aksenov

A series of novel phosphates with the general formulas Ca9Gd0.9−xTm0.1Smx(PO4)7 and Ca9Gd0.9−yTmySm0.1(PO4)7 were synthesized by solid-state method. As-obtained phosphates were characterized by powder X-ray diffraction and second harmonic generation analyses, dielectric measurements, luminescence spectroscopy. All samples were single phase and characterized by the whitlockite-type structure with space group R3c. An influence of admixture concentration of REE3+ ions in the initial host on dielectric properties was studied in details. Synthesized phosphates are characterized by intensive luminescence. The emission in the orange region of the visible spectrum is observed for Ca9Gd0.9Sm0.1(PO4)7 with a maximum intensity band at 602 nm. The line in blue region at 455 nm, which corresponds to 1D2 → 3F4 Tm3+ transition, is registered for Ca9Gd0.9Tm0.1(PO4)7. Emission in the white region of CIE coordinates was registered for Tm-Sm co-doped compounds.


2022 ◽  
pp. 002215542110649
Author(s):  
Joshua T. Dodge ◽  
Andrew D. Doyle ◽  
Ana C. Costa-da-Silva ◽  
Christopher T. Hogden ◽  
Eva Mezey ◽  
...  

Multiplex immunofluorescence (mIF) is an effective technique for the maximal visualization of multiple target proteins in situ. This powerful tool is mainly limited by the spectral overlap of the currently available synthetic fluorescent dyes. The fluorescence excitation wavelengths ranging between 405 and 488 nm are rarely used in mIF imaging and serve as a logical additional slot for a fluorescent probe. In the present study, we demonstrate that the addition of 2,3,4,5,6-pentafluoroaniline to Atto 465 NHS ester, creating Atto 465-pentafluoroaniline (Atto 465-p), generates a bright nuclear stain in the violet-blue region of the visible spectrum. This allows the 405 nm excitation and emission, classically used for nuclear counterstains, to be used for the detection of another target protein. This increases the flexibility of the mIF panel and, with appropriate staining and microscopy, enables the quantitative analysis of at least six targets in one tissue section. (J Histochem Cytochem XX: XXX–XXX, XXXX)


Author(s):  
Evangelos Alevizos ◽  
Athanasios V Argyriou ◽  
Dimitris Oikonomou ◽  
Dimitrios D Alexakis

Shallow bathymetry inversion algorithms have long been applied in various types of remote sensing imagery with relative success. However, this approach requires that imagery with increased radiometric resolution in the visible spectrum is available. The recent developments in drones and camera sensors allow for testing current inversion techniques on new types of datasets. This study explores the bathymetric mapping capabilities of fused RGB and multispectral imagery, as an alternative to costly hyperspectral sensors. Combining drone-based RGB and multispectral imagery into a single cube dataset, provides the necessary radiometric detail for shallow bathymetry inversion applications. This technique is based on commercial and open-source software and does not require input of reference depth measurements in contrast to other approaches. The robustness of this method was tested on three different coastal sites with contrasting seafloor types. The use of suitable end-member spectra which are representative of the seafloor types of the study area and the sun zenith angle are important parameters in model tuning. The results of this study show good correlation (R2>0.7) and less than half a meter error when they are compared with sonar depth data. Consequently, integration of various drone-based imagery may be applied for producing centimetre resolution bathymetry maps at low cost for small-scale shallow areas.


2022 ◽  
Author(s):  
Rajesh Khanna M ◽  
Karthikeyan Appathurai ◽  
Kuppusamy P G ◽  
Prianka R R

Abstract The present research realises a controllable optical memory using one dimensional indium phosphate (InP) photonic structures at three optical communication windows (850 nm, 1310 nm and 1550 nm). The photonic structures comprise 21 layers of InP and air material. The memory applications are realised at both single and dual signals of the communication windows. The physics of the research deals with the materials property including the variation of the refractive indices with respect to the input signal. Similarly, mathematics of the works relies on the analysis of reflectance, transmittance and absorbance phenomena. Further, the light from visible spectrum acts as triggering signal to realise optical memory applications. Finally, it is revealed that InP based photonic structures are suitable for controllable memory applications pertaining to the single wavelength (850 nm, 1310 nm, 1550 nm) or dual wavelengths (850 nm and 1310 nm, 1310 nm and 1550 nm, 1550 nm and 850 nm).


2022 ◽  
Vol 355 ◽  
pp. 03014
Author(s):  
Sujie Zhang ◽  
Ming Deng ◽  
Xiaoyuan Xie

The quality of Tungsten Inert Gas welding is dependent on human supervision, which can’t suitable for automation. This study designed a model for assessing the tungsten inert gas welding quality with the potential of application in real-time. The model used the K-Nearest Neighborhood (KNN) algorithm, paired with images in the visible spectrum formed by high dynamic range camera. Firstly, projecting the image of weld defects in the training set into a two-dimensional space using multidimensional scaling (MDS), so similar weld defects was aggregated into blocks and distributed in hash, and among different weld defects has overlap. Secondly, establishing models including the KNN, CNN, SVM, CART and NB classification, to classify and recognize the weld defect images. The results show that the KNN model is the best, which has the recognition accuracy of 98%, and the average time of recognizing a single image of 33ms, and suitable for common hardware devices. It can be applied to the image recognition system of automatic welding robot to improve the intelligent level of welding robot.


2022 ◽  
Vol 130 (1) ◽  
pp. 171
Author(s):  
М.В. Смирнов ◽  
Н.В. Сидоров ◽  
М.Н. Палатников

A brief review of the features of the defect structure and studies of the luminescent properties of nonlinear optical lithium niobate crystals of various compositions and genesis was given. It was established that the electron-hole pair NbNb4+-O- in the oxygen-octahedral cluster NbO6 emitted in the short-wavelength region of the visible spectrum (400-500 nm), while point defects (VLi and NbNb4+-NbLi4+ bipolarons) - in the long-wavelength region (500-620 nm). At the ratio of Li/Nb≈1 the luminescence was extinguished in the visible region of the spectrum due to decreasing the intrinsic luminescence centers. It was shown that the presence of polaron luminescence in the near-IR region (700-1050 nm) was due to the small polarons NbLi4+ and impurity ions Cr3+ localized in lithium and niobium octahedra. The energy transfer between the luminescence centers in the visible and near-IR spectral regions was detected. Moreover, luminescence in near-IR regions was dominant. Doping of LiNbO3 crystals with zinc and magnesium at ZnO<4.46 mol.% and MgO<5.29 mol.% led to decreasing luminescence of intrinsic defects (VLi, NbNb4+-NbLi4+). However, there was an increase of the contribution of the short-wave spectrum component at higher dopant concentrations because of the introduction of Zn and Mg into the origin positions of Nb ions.


Sign in / Sign up

Export Citation Format

Share Document