scholarly journals On the use of ancillary data by applying the concepts of the theory of evidence to remote sensing digital image classification

Author(s):  
Rodrigo Lersch ◽  
Victor Haertel ◽  
Yosio Shimabukuro
Author(s):  
Khushbu Maurya ◽  
Seema Mahajan ◽  
Nilima Chaube

AbstractMangrove forests are considered to be the most productive ecosystem yet vanishing rapidly over the world. They are mostly found in the intertidal zone and sheltered by the seacoast. Mangroves have potential socio-economic benefits such as protecting the shoreline from storm and soil erosion, flood and flow control, acting as a carbon sink, provides a fertile breeding ground for marine species and fauna. It also acts as a source of income by providing various forest products. Restoration and conservation of mangrove forests remain a big challenge due to the large and inaccessible areas covered by mangroves forests which makes field assessment difficult and time-consuming. Remote sensing along with various digital image classification approaches seem to be promising in providing better and accurate results in mapping and monitoring the mangroves ecosystem. This review paper aims to provide a comprehensive summary of the work undertaken, and addresses various remote sensing techniques applied for mapping and monitoring of the mangrove ecosystem, and summarize their potential and limitation. For that various digital image classification techniques are analyzed and compared based on the type of image used with its spectral resolution, spatial resolution, and other related image features along with the accuracy of the classification to derive specific class information related to mangroves. The digital image classification techniques used for mangrove mapping and monitoring in various studies can be classified into pixel-based, object-based, and knowledge-based classifiers. The various satellite image data analyzed are ranged from light detection and ranging (LiDAR), hyperspectral and multispectral optical imagery, synthetic aperture radar (SAR), and aerial imagery. Supervised state of the art machine learning/deep machine learning algorithms which use both pixel-based and object-based approaches and can be combined with the knowledge-based approach are widely used for classification purpose, due to the recent development and evolution in these techniques. There is a huge future scope to study the performance of these classification techniques in combination with various high spatial and spectral resolution optical imageries, SAR and LiDAR, and also with multi-sensor, multiresolution, and temporal data.


Author(s):  
Utkarsh Shrivastav ◽  
Sanjay Kumar Singh

Image classification is a technique to categorize an image in to given classes on the basis of hidden characteristics or features extracted using image processing. With rapidly growing technology, the size of images is growing. Different categories of images may contain different types of hidden information such as x-ray, CT scan, MRI, pathologies images, remote sensing images, satellite images, and natural scene image captured via digital cameras. In this chapter, the authors have surveyed various articles and books and summarized image classification techniques. There are supervised techniques like KNN and SVM, which classify an image into given classes and unsupervised techniques like K-means and ISODATA for classifying image into a group of clusters. For big images, deep learning networks can be employed that are fast and efficient and also compute hidden features automatically.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


Author(s):  
Andreas Christian Braun

Land-use and land-cover analyses based on satellite image classification are used in most, if not all, sub-disciplines of physical geography. Data availability and increasingly simple image classification techniques – nowadays, even implemented in simple geographic information systems – increase the use of such analyses. To assess the quality of such land-use analyses, accuracy metrics are applied. The results are considered to have sufficient quality, exceeding thresholds published in the literature. A typical practice in many studies is to confuse accuracy in remote sensing with quality, as required by physical geography. However, notions such as quality are subject to normative considerations and performative practices, which differ between scientific domains. Recent calls for critical physical geography have stressed that scientific results cannot be understood separately from the values and practices underlying them. This article critically discusses the specific understanding of quality in remote sensing, outlining norms and practices shaping it and their relation to physical geography. It points out that, as a seeming paradox, results considered more accurate in remote sensing terms can be less informative – or meaningful – in geographical terms. Finally, a roadmap of how to apply remote sensing land-use analyses more constructively in physical geography is proposed.


Sign in / Sign up

Export Citation Format

Share Document