When to fuse what? random forest based fusion of low-, mid-, and high-level information for land cover classification from optical and SAR images

Author(s):  
Ronny Hansch ◽  
Olaf Hellwich
2020 ◽  
Vol 12 (22) ◽  
pp. 3801 ◽  
Author(s):  
Yinghui Quan ◽  
Yingping Tong ◽  
Wei Feng ◽  
Gabriel Dauphin ◽  
Wenjiang Huang ◽  
...  

The fusion of multi-spectral and synthetic aperture radar (SAR) images could retain the advantages of each data, hence benefiting accurate land cover classification. However, some current image fusion methods face the challenge of producing unexpected noise. To overcome the aforementioned problem, this paper proposes a novel fusion method based on weighted median filter and Gram–Schmidt transform. In the proposed method, Sentinel-2A images and GF-3 images are respectively subjected to different preprocessing processes. Since weighted median filter does not strongly blur edges while filtering, it is applied to Sentinel-2A images for reducing noise. The processed Sentinel images are then transformed by Gram–Schmidt with GF-3 images. Two popular methods, principal component analysis method and traditional Gram–Schmidt transform, are used as the comparison methods in the experiment. In addition, random forest, a powerful ensemble model, is adopted as the land cover classifier due to its fast training speed and excellent classification performance. The overall accuracy, Kappa coefficient and classification map of the random forest are used as the evaluation criteria of the fusion method. Experiments conducted on five datasets demonstrate the superiority of the proposed method in both objective metrics and visual impressions. The experimental results indicate that the proposed method can improve the overall accuracy by up to 5% compared to using the original Sentinel-2A and has the potential to improve the satellite-based land cover classification accuracy.


2014 ◽  
Vol 6 (5) ◽  
pp. 3770-3790 ◽  
Author(s):  
Wei Gao ◽  
Jian Yang ◽  
Wenting Ma

2020 ◽  
Vol 12 (15) ◽  
pp. 2411 ◽  
Author(s):  
Thanh Noi Phan ◽  
Verena Kuch ◽  
Lukas W. Lehnert

Land cover information plays a vital role in many aspects of life, from scientific and economic to political. Accurate information about land cover affects the accuracy of all subsequent applications, therefore accurate and timely land cover information is in high demand. In land cover classification studies over the past decade, higher accuracies were produced when using time series satellite images than when using single date images. Recently, the availability of the Google Earth Engine (GEE), a cloud-based computing platform, has gained the attention of remote sensing based applications where temporal aggregation methods derived from time series images are widely applied (i.e., the use the metrics such as mean or median), instead of time series images. In GEE, many studies simply select as many images as possible to fill gaps without concerning how different year/season images might affect the classification accuracy. This study aims to analyze the effect of different composition methods, as well as different input images, on the classification results. We use Landsat 8 surface reflectance (L8sr) data with eight different combination strategies to produce and evaluate land cover maps for a study area in Mongolia. We implemented the experiment on the GEE platform with a widely applied algorithm, the Random Forest (RF) classifier. Our results show that all the eight datasets produced moderately to highly accurate land cover maps, with overall accuracy over 84.31%. Among the eight datasets, two time series datasets of summer scenes (images from 1 June to 30 September) produced the highest accuracy (89.80% and 89.70%), followed by the median composite of the same input images (88.74%). The difference between these three classifications was not significant based on the McNemar test (p > 0.05). However, significant difference (p < 0.05) was observed for all other pairs involving one of these three datasets. The results indicate that temporal aggregation (e.g., median) is a promising method, which not only significantly reduces data volume (resulting in an easier and faster analysis) but also produces an equally high accuracy as time series data. The spatial consistency among the classification results was relatively low compared to the general high accuracy, showing that the selection of the dataset used in any classification on GEE is an important and crucial step, because the input images for the composition play an essential role in land cover classification, particularly with snowy, cloudy and expansive areas like Mongolia.


2019 ◽  
Vol 11 (24) ◽  
pp. 3000 ◽  
Author(s):  
Francisco Alonso-Sarria ◽  
Carmen Valdivieso-Ros ◽  
Francisco Gomariz-Castillo

Supervised land cover classification from remote sensing imagery is based on gathering a set of training areas to characterise each of the classes and to train a predictive model that is then used to predict land cover in the rest of the image. This procedure relies mainly on the assumptions of statistical separability of the classes and the representativeness of the training areas. This paper uses isolation forests, a type of random tree ensembles, to analyse both assumptions and to easily correct lack of representativeness by digitising new training areas where needed to improve the classification of a Landsat-8 set of images with Random Forest. The results show that the improved set of training areas after the isolation forest analysis is more representative of the whole image and increases classification accuracy. Besides, the distribution of isolation values can be useful to estimate class separability. A class separability parameter that summarises such distributions is proposed. This parameter is more correlated to omission and commission errors than other separability measures such as the Jeffries–Matusita distance.


Sign in / Sign up

Export Citation Format

Share Document