sentinel 2a
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 248)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 14 (1) ◽  
pp. 230
Author(s):  
Alim Samat ◽  
Paolo Gamba ◽  
Wei Wang ◽  
Jieqiong Luo ◽  
Erzhu Li ◽  
...  

Accurate and efficiently updated information on color-coated steel sheet (CCSS) roof materials in urban areas is of great significance for understanding the potential impact, challenges, and issues of these materials on urban sustainable development, human health, and the environment. Thanks to the development of Earth observation technologies, remote sensing (RS) provides abundant data to identify and map CCSS materials with different colors in urban areas. However, existing studies are still quite challenging with regards to the data collection and processing costs, particularly in wide geographical areas. Combining free access high-resolution RS data and a cloud computing platform, i.e., Sentinel-2A/B data sets and Google Earth Engine (GEE), this study aims at CCSS material identification and mapping. Specifically, six novel spectral indexes that use Sentinel-2A/B MSIL2A data are proposed for blue and red CCSS material identification, namely the normalized difference blue building index (NDBBI), the normalized difference red building index NDRBI, the enhanced blue building index (EBBI), the enhanced red building index (ERBI), the logical blue building index (LBBI) and the logical red building index (LRBI). These indexes are qualitatively and quantitatively evaluated on a very large number of urban sites all over the P.R. China and compared with the state-of-the-art redness and blueness indexes (RI and BI, respectively). The results demonstrate that the proposed indexes, specifically the LRBI and LBBI, are highly effective in visual evaluation, clearly detecting and discriminating blue and red CCSS covers from other urban materials. Results show that urban areas from the northern parts of P.R. China have larger proportions of blue and red CCSS materials, and areas of blue and red CCSS material buildings are positively correlated with population and urban size at the provincial level across China.


Author(s):  
Luhur Moekti Prayogo

Mangroves are trees whose habitat is affected by tides, and their presence has decreased from year to year. Today, mapping technology has undergone many developments, including the availability of images of various resolutions and cloud-based image processing. One of the popular platforms today is the Google Earth Engine. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for extensive processing. The advantage of using Google Earth Engine is that users do not have to be IT experts without experts in application development, WEB programming, and HTML. This study aims to conduct a study on mangrove mapping in Gili Genting District with Sentinel-2A imagery using a Google Earth Engine. This location was chosen since there are still many mangroves, especially on the Gili Raja and Gili Genting Islands. From this research, it can be concluded that cloud computing-based Sentinel-2A image processing shows that the vegetation value of NDVI results ranges from -0.923208 to 0.75579. The classification results show that mangrove forests' overall presence on Gili Genting Island is more expansive than Gili Raja Island with 16.74 ha and 14.75 ha. The use of the Google Earth Engine platform simplifies the analysis process because image processing can be done once with various scripts so that analysis becomes faster.


2021 ◽  
Vol 14 (1) ◽  
pp. 164
Author(s):  
Jaroslav Hofierka ◽  
Katarína Onačillová

Albedo is an important parameter in many environmental and renewable energy models. Satellite sensors can be used to derive broadband or narrowband albedos. However, the spatial resolution of such data can be insufficient in urban areas with complex morphology and land cover diversity. In this study, we propose the use of widely available aerial orthophotographs to derive visible band albedo in urban surfaces that can be effectively used in high-resolution applications. The solution is based on the estimation of the reflected irradiance captured by an RGB sensor and approximated by the brightness component in the hue-saturation-brightness (HSB) color model and incident solar irradiance modelled by the r.sun module in GRASS GIS. The visible band albedo values are calibrated by published reference values for selected land cover classes or, alternatively, by a spectroradiometer. The method is applied to the central part of Košice and compared to visible band albedo derived from the Landsat 8 OLI and Sentinel 2A sensors and previously published typical albedo values for various land cover classes, resulting in reasonable agreement. The proposed methodology is implemented using standard GIS tools that are easily applicable to any high-resolution urban data.


2021 ◽  
Vol 12 (6) ◽  
pp. 745-750
Author(s):  
D. Anil Kumar ◽  
◽  
P. Srikanth ◽  
T. L. Neelima ◽  
M. Uma Devi ◽  
...  

A study was carried out using the temporal Sentinel-1B microwave data (June to November at 12 days interval) and Sentinel-2A/2B optical data (June to November) to discriminate the maize crop from other competing crops rice and cotton in Siddipet district, Telangana state, India during kharif, 2019 (June to November). The study utilized the data from multiple sources such as Multi-temporal VH backscatter intensity from Sentinel-1B SAR and NDVI values from Sentinel-2A/2B in combination with field data to discriminate the maize crop. Synchronous to satellite pass, ground truth data on crop parameters viz., crop stage, crop vigour, biomass, plant height, plant density, soil moisture, LAI and chlorophyll content were collected. Multi-temporal VH backscatter intensity and Normalized Difference Vegetation Index (NDVI) data were used to characterize backscatter and greenness behaviour of the maize crop. The backscatter intensity (dB) for maize crop ranged from -21.83 (the lowest backscatter values) at planting to -12.52 (the highest backscatter values) at peak growth stage. The NDVI values during vegetative and reproductive stages (August and September) were >0.6 and during senescence to harvesting the values were less than or equal to 0.52. The increase in backscatter intensity values from initial vegetative stage to peak stage was due to increased volume scattering of the maize crop canopy and a continuous decline in backscatter intensity values of VH band at maturity stage, was due to decrease in greenness and moisture content in leaves of the maize crop helped in maize crop discrimination from other dominant kharif crops in the study area.


2021 ◽  
Vol 6 (3) ◽  
pp. 377
Author(s):  
Wahyu Lazuardi ◽  
Pramaditya Wicaksono

Spatial information on the varying composition of coral reefs is beneficial for the management and preservation of natural resources in coastal areas. Its availability is inseparable from environmental management goals; however, it can also be used as a means of supporting tourism activities and predicting the emergence of certain living species. A satellite image is one of the effective and efficient data sources that provide spatial information on coral reef variations. This study aimed to evaluate the classification scheme of coral reef life-form using images with different spatial resolutions on Parang Island, Karimunjawa Islands, Central Java. These images were from PlanetScope (3m), PlanetScope resampling (6m), and Sentinel-2A MSI (10m), whose spatial resolutions functioned as the base for building the 3m, 6m, and 10m classification schemes producing 12, 11, and 9 classes, respectively. As for the classification method, it integrated both object-based and pixel-based approaches. The results showed that the highest overall accuracy (60%) was obtained using Sentinel-2A MSI image (10m), followed by PlanetScope (3m) with 48% accuracy, and PlanetScope resampling (6m) with 40% accuracy. This finding indicates that multiresolution images can be used to produce complex coral reef life-form maps with different levels of information details. Keywords: Coral reef; Life-form; Planetscope; Spatial resolution; Classification scheme   Copyright (c) 2021 Geosfera Indonesia and Department of Geography Education, University of Jember This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License


2021 ◽  
Author(s):  
Claudiu Valeriu Angearu ◽  
Irina Ontel ◽  
Anisoara Irimescu ◽  
Burcea Sorin

Abstract Hail is one of the dangerous meteorological phenomena facing society. The present study aims to analyze the hail event from 20 July 2020, which affected the villages of Urleasca, Traian, Silistraru and Căldăruşa from the Traian commune, Baragan Plain. The analysis was performed on agricultural lands, using satellite images in the optical domain: Sentinel-2A, Landsat-8, Terra MODIS, as well as the satellite product in the radar domain: Soil Water Index (SWI), and weather radar data. Based on Sentinel-2A images, a threshold of 0.05 of the Normalized Difference Vegetation Index (NDVI) difference was established between the two moments of time analyzed (14 and 21 July), thus it was found that about 4000 ha were affected. The results show that the intensity of the hail damage was directly proportional to the Land Surface Temperature (LST) difference values in Landsat-8, from 15 and 31 July. Thus, the LST difference values higher than 12° C were in the areas where NDVI suffered a decrease of 0.4-0.5. The overlap of the hail mask extracted from NDVI with the SWI difference situation at a depth of 2 cm from 14 and 21 July confirms that the phenomenon recorded especially in the west of the analyzed area, highlighted by the large values (greater than 55 dBZ) of weather radar reflectivity as well, indicating medium–large hail size. This research also reveals that satellite data is useful for cross validation of surface-based weather reports and weather radar derived products.


Sign in / Sign up

Export Citation Format

Share Document