Application of Doppler Radar for Measurement of Current Velocity at Small Incidence Angles: The First Experiments at the River

Author(s):  
Vladimir Karaev ◽  
Mariya Ryabkova ◽  
Mariya Panfilova ◽  
Yury Titchenko ◽  
Eugeny Meshkov ◽  
...  
Author(s):  
H. Järvinen ◽  
K. Salonen ◽  
M. Lindskog ◽  
A. Huuskonen ◽  
S. Niemelä ◽  
...  
Keyword(s):  

1971 ◽  
Author(s):  
H. W. Prinsen ◽  
R. H. Jarvis ◽  
S. G. Margolis

2018 ◽  
Vol 146 (8) ◽  
pp. 2483-2502 ◽  
Author(s):  
Howard B. Bluestein ◽  
Kyle J. Thiem ◽  
Jeffrey C. Snyder ◽  
Jana B. Houser

Abstract This study documents the formation and evolution of secondary vortices associated within a large, violent tornado in Oklahoma based on data from a close-range, mobile, polarimetric, rapid-scan, X-band Doppler radar. Secondary vortices were tracked relative to the parent circulation using data collected every 2 s. It was found that most long-lived vortices (those that could be tracked for ≥15 s) formed within the radius of maximum wind (RMW), mainly in the left-rear quadrant (with respect to parent tornado motion), passing around the center of the parent tornado and dissipating closer to the center in the right-forward and left-forward quadrants. Some secondary vortices persisted for at least 1 min. When a Burgers–Rott vortex is fit to the Doppler radar data, and the vortex is assumed to be axisymmetric, the secondary vortices propagated slowly against the mean azimuthal flow; if the vortex is not assumed to be axisymmetric as a result of a strong rear-flank gust front on one side of it, then the secondary vortices moved along approximately with the wind.


Author(s):  
Pallab Kumar Gogoi ◽  
Mrinal Kanti Mandal ◽  
Ayush Kumar ◽  
Tapas Chakravarty

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3588
Author(s):  
Yuki Iwata ◽  
Han Trong Thanh ◽  
Guanghao Sun ◽  
Koichiro Ishibashi

Heart rate measurement using a continuous wave Doppler radar sensor (CW-DRS) has been applied to cases where non-contact detection is required, such as the monitoring of vital signs in home healthcare. However, as a CW-DRS measures the speed of movement of the chest surface, which comprises cardiac and respiratory signals by body motion, extracting cardiac information from the superimposed signal is difficult. Therefore, it is challenging to extract cardiac information from superimposed signals. Herein, we propose a novel method based on a matched filter to solve this problem. The method comprises two processes: adaptive generation of a template via singular value decomposition of a trajectory matrix formed from the measurement signals, and reconstruction by convolution of the generated template and measurement signals. The method is validated using a dataset obtained in two different experiments, i.e., experiments involving supine and seated subject postures. Absolute errors in heart rate and standard deviation of heartbeat interval with references were calculated as 1.93±1.76bpm and 57.0±28.1s for the lying posture, and 9.72±7.86bpm and 81.3±24.3s for the sitting posture.


Sign in / Sign up

Export Citation Format

Share Document