An Efficient Ray Tracing Based Method of Ground Penetrating Radar Simulation for Dispersive Media

Author(s):  
Junfa Zhang ◽  
Yesheng Gao ◽  
Xingzhao Liu ◽  
Zhicheng Wang ◽  
Yu Cui
Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1127-1131 ◽  
Author(s):  
Zonghou Xiong ◽  
Alan C. Tripp

Ground‐penetrating radar (GPR) has been a very efficient tool for mapping shallow targets for applications such as those in geological engineering and environmental management (Fisher et al. 1992). Since the application of GPR depends on the complex electrical properties of the ground, it is important to study this dependence in all its manifestations. The depth of investigation for GPR applications depends strongly on the conductivity of the ground. If the ground is very conductive, GPR waves will be absorbed before they reach the target region. Earth materials can be dispersive, i.e., the conductivity and permittivity of rocks are frequency dependent (Levitskaya and Sternberg, 1994). This is especially true at high frequencies. GPR waves will also be absorbed in dispersive media. Hence modeling the GPR response in dispersive materials can reveal behaviors of importance in understanding field responses.


2019 ◽  
Vol 170 ◽  
pp. 103821 ◽  
Author(s):  
Hai Liu ◽  
Bangan Xing ◽  
Honghua Wang ◽  
Jie Cui ◽  
Billie F. Spencer

Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 472-477 ◽  
Author(s):  
Qingyun Di ◽  
Miaoyue Wang

We use a numerical model to study the effects of attenuation and dispersion upon the migration of ground‐penetrating radar (GPR) profiles. A finite‐element method (FEM) is developed that incorporates attenuation and is used to generate synthetic GPR profiles with random noise. These profiles are then migrated with and without the attenuation term using our FEM codes. The misfit between the position of interfaces in the model and the position of corresponding interfaces in the migrated profile is greatly decreased when the attenuation term is considered in the migration process. The improvement in resolution results from the use of the group velocity rather than any phase velocity. Consequently, for dispersive media the attenuation term of high‐frequency GPR waves cannot be ignored in migration.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 466-471 ◽  
Author(s):  
Luca Baradello ◽  
José M. Carcione ◽  
Davide Gei

We propose the exploding‐reflector method to simulate a monostatic survey with a single simulation. The exploding reflector, used in seismic modeling, is adapted for ground‐penetrating radar (GPR) modeling by using the analogy between acoustic and electromagnetic waves. The method can be used with ray tracing to obtain the location of the interfaces and estimate the properties of the medium on the basis of the traveltimes and reflection amplitudes. In particular, these can provide a better estimation of the conductivity and geometrical details. The modeling methodology is complemented with the use of the plane‐wave method. The technique is illustrated with GPR data from an excavated tomb of the nineteenth century.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


2017 ◽  
Vol 3 (1) ◽  
pp. 73-83
Author(s):  
Rahmayati Alindra ◽  
Heroe Wijanto ◽  
Koredianto Usman

Ground Penetrating Radar (GPR) adalah salah satu jenis radar yang digunakan untuk menyelidiki kondisi di bawah permukaan tanah tanpa harus menggali dan merusak tanah. Sistem GPR terdiri atas pengirim (transmitter), yaitu antena yang terhubung ke generator sinyal dan bagian penerima (receiver), yaitu antena yang terhubung ke LNA dan ADC yang kemudian terhubung ke unit pengolahan data hasil survey serta display sebagai tampilan output-nya dan post  processing untuk alat bantu mendapatkan informasi mengenai suatu objek. GPR bekerja dengan cara memancarkan gelombang elektromagnetik ke dalam tanah dan menerima sinyal yang dipantulkan oleh objek-objek di bawah permukaan tanah. Sinyal yang diterima kemudian diolah pada bagian signal processing dengan tujuan untuk menghasilkan gambaran kondisi di bawah permukaan tanah yang dapat dengan mudah dibaca dan diinterpretasikan oleh user. Signal processing sendiri terdiri dari beberapa tahap yaitu A-Scan yang meliputi perbaikan sinyal dan pendektesian objek satu dimensi, B-Scan untuk pemrosesan data dua dimensi  dan C-Scan untuk pemrosesan data tiga dimensi. Metode yang digunakan pada pemrosesan B-Scan salah satunya adalah dengan  teknik pemrosesan citra. Dengan pemrosesan citra, data survey B-scan diolah untuk didapatkan informasi mengenai objek. Pada penelitian ini, diterapkan teori gradien garis pada pemrosesan citra B-scan untuk menentukan bentuk dua dimensi dari objek bawah tanah yaitu persegi, segitiga atau lingkaran. 


Sign in / Sign up

Export Citation Format

Share Document