Classification of Normal and Hypoxia EEG Based on Approximate Entropy and Welch Power-Spectral-Density

Author(s):  
Meng Hu ◽  
Jiaojie Li ◽  
Guang Li ◽  
Xiaowei Tang ◽  
Qiuping Ding
2021 ◽  
Vol 15 ◽  
Author(s):  
Yang Di ◽  
Xingwei An ◽  
Wenxiao Zhong ◽  
Shuang Liu ◽  
Dong Ming

An ongoing interest towards identification based on biosignals, such as electroencephalogram (EEG), magnetic resonance imaging (MRI), is growing in the past decades. Previous studies indicated that the inherent information about brain activity may be used to identify individual during resting-state of eyes open (REO) and eyes closed (REC). Electroencephalographic (EEG) records the data from the scalp, and it is believed that the noisy EEG signals can influence the accuracies of one experiment causing unreliable results. Therefore, the stability and time-robustness of inter-individual features can be investigated for the purpose of individual identification. In this work, we conducted three experiments with the time interval of at least 2 weeks, and used different types of measures (Power Spectral Density, Cross Spectrum, Channel Coherence and Phase Lags) to extract the individual features. The Pearson Correlation Coefficient (PCC) is calculated to measure the level of linear correlation for intra-individual, and Support Vector Machine (SVM) is used to obtain the related classification accuracy. Results show that the classification accuracies of four features were 85–100% for intra-experiment dataset, and were 80–100% for fusion experiments dataset. For inter-experiments classification of REO features, the optimized frequency range is 13–40 Hz for three features, Power Spectral Density, Channel Coherence and Cross Spectrum. For inter-experiments classification of REC, the optimized frequency range is 8–40 Hz for three features, Power Spectral Density, Channel Coherence and Cross Spectrum. The classification results of Phase Lags are much lower than the other three features. These results show the time-robustness of EEG, which can further use for individual identification system.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 66
Author(s):  
Bhagyalaxmi Jena ◽  
Sudhansu Sekhar Singh

The significant part of any speech signal lies in the information content and the emotions contents like stress or fatigue at a particular period of time. The classification of various types of stress and their effects are defined here. To analyze the changes in stressed speech than that of the normal speech, a database has been created which has investigated the stress among students during the examination in our college. In this paper, the spectral analysis of speech is done where emphasis has been given in the parameters like Fast Fourier Transform (FFT), spectrogram and Power Spectral Density (PSD). These parameters have been simulated using MATLAB codes. The comparison of the mentioned parameters is also done between a normal speech and a psychological stressed speech.


2020 ◽  
Vol 499 (4) ◽  
pp. 4687-4697
Author(s):  
M S Cunha ◽  
P P Avelino ◽  
W J Chaplin

ABSTRACT We discuss and characterize the power spectral density properties of a model aimed at describing pulsations in stars from the main-sequence to the asymptotic giant branch. We show that the predicted limit of the power spectral density for a pulsation mode in the presence of stochastic noise is always well approximated by a Lorentzian function. While in stars predominantly stochastically driven the width of the Lorentzian is defined by the mode lifetime, in stars where the driving is predominately coherent the width is defined by the amplitude of the stochastic perturbations. In stars where both drivings are comparable, the width is defined by both these parameters and is smaller than that expected from pure stochastic driving. We illustrate our model through numerical simulations and propose a well-defined classification of stars into predominantly stochastic (solar-like) and predominately coherent (classic) pulsators. We apply the model to the study of the Mira variable U Per, and the semiregular variable L2 Pup and, following our classification, conclude that they are both classical pulsators. Our model provides a natural explanation for the change in behaviour of the pulsation amplitude-period relation noted in several earlier works. Moreover, our study of L2 Pup enables us to test the scaling relation between the mode line width and effective temperature, confirming that an exponential scaling reproduces well the data all the way from the main sequence to the asymptotic giant branch, down to temperatures about 1000 K below what has been tested in previous studies.


Sign in / Sign up

Export Citation Format

Share Document