Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2426
Author(s):  
Anlong Zhang ◽  
Zhiyun Lin ◽  
Bo Wang ◽  
Zhimin Han

A recurrent neural network (RNN) and differential evolution optimization (DEO) based nonlinear model predictive control (NMPC) technique is proposed for position control of a single-link flexible-joint (FJ) robot. First, a simple three-layer recurrent neural network with rectified linear units as an activation function (ReLU-RNN) is employed for approximating the system dynamic model. Then, using the RNN predictive model and model predictive control (MPC) scheme, an RNN and DEO based NMPC controller is designed, and the DEO algorithm is used to solve the controller. Finally, comparing numerical simulation findings demonstrates the efficiency and performance of the proposed approach. The merit of this method is that not only is the control precision satisfied, but also the overshoots and the residual vibration are well suppressed.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110195
Author(s):  
Sorin Grigorescu ◽  
Cosmin Ginerica ◽  
Mihai Zaha ◽  
Gigel Macesanu ◽  
Bogdan Trasnea

In this article, we introduce a learning-based vision dynamics approach to nonlinear model predictive control (NMPC) for autonomous vehicles, coined learning-based vision dynamics (LVD) NMPC. LVD-NMPC uses an a-priori process model and a learned vision dynamics model used to calculate the dynamics of the driving scene, the controlled system’s desired state trajectory, and the weighting gains of the quadratic cost function optimized by a constrained predictive controller. The vision system is defined as a deep neural network designed to estimate the dynamics of the image scene. The input is based on historic sequences of sensory observations and vehicle states, integrated by an augmented memory component. Deep Q-learning is used to train the deep network, which once trained can also be used to calculate the desired trajectory of the vehicle. We evaluate LVD-NMPC against a baseline dynamic window approach (DWA) path planning executed using standard NMPC and against the PilotNet neural network. Performance is measured in our simulation environment GridSim, on a real-world 1:8 scaled model car as well as on a real size autonomous test vehicle and the nuScenes computer vision dataset.


Author(s):  
Qiangang Zheng ◽  
Yong Wang ◽  
Fengyong Sun ◽  
Haibo Zhang

A novel nonlinear model predictive control method for aero-engine direct thrust control is proposed to improve engine response ability and reduce computational complexity of nonlinear model predictive control. The control objective of the proposed method is the thrust directly instead of the measurable parameters. The linearized model based on online sliding window deep neural network is proposed as predictive model. The online sliding window deep neural network has strong fitting capacity for nonlinear object and adopted to fitting the transient process of engine. The back propagation is adopted to obtain linearized model of online sliding window deep neural network, which greatly reduce the calculated amount. The comparison simulations of the popular nonlinear model predictive control based on extended Kalman filter and the proposed one are carried out. The simulation results show that compared with the popular nonlinear model predictive control, the proposed nonlinear model predictive control not only has the better response ability but also has reduced computational complexity greatly, nearly reduce computation time more than 35 ms.


Sign in / Sign up

Export Citation Format

Share Document