Restoring high frequency spectral envelopes using neural networks for speech bandwidth extension

Author(s):  
Yu Gu ◽  
Zhen-Hua Ling
Econometrics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 17
Author(s):  
Konstantinos Gkillas ◽  
Christoforos Konstantatos ◽  
Costas Siriopoulos

We study the non-linear causal relation between uncertainty-due-to-infectious-diseases and stock–bond correlation. To this end, we use high-frequency 1-min data to compute daily realized measures of correlation and jumps, and then, we employ a nonlinear Granger causality test with the use of artificial neural networks so as to investigate the predictability of this type of uncertainty on realized stock–bond correlation and jumps. Our findings reveal that uncertainty-due-to-infectious-diseases has significant predictive value on the changes of the stock–bond relation.


Author(s):  
Ming Zhang

This chapter develops a new nonlinear model, Ultra high frequency siGmoid and Trigonometric Higher Order Neural Networks (UGT-HONN), for data pattern recognition. UGT-HONN includes Ultra high frequency siGmoid and Sine function Higher Order Neural Networks (UGS-HONN) and Ultra high frequency siGmoid and Cosine functions Higher Order Neural Networks (UGC-HONN). UGS-HONN and UGC-HONN models are used to recognition data patterns. Results show that UGS-HONN and UGC-HONN models are better than other Polynomial Higher Order Neural Network (PHONN) and Trigonometric Higher Order Neural Network (THONN) models, since UGS-HONN and UGC-HONN models to recognize data pattern with error approaching 0.0000%.


2016 ◽  
pp. 682-715
Author(s):  
Ming Zhang

This chapter develops a new nonlinear model, Ultra high frequency siGmoid and Trigonometric Higher Order Neural Networks (UGT-HONN), for data pattern recognition. UGT-HONN includes Ultra high frequency siGmoid and Sine function Higher Order Neural Networks (UGS-HONN) and Ultra high frequency siGmoid and Cosine functions Higher Order Neural Networks (UGC-HONN). UGS-HONN and UGC-HONN models are used to recognition data patterns. Results show that UGS-HONN and UGC-HONN models are better than other Polynomial Higher Order Neural Network (PHONN) and Trigonometric Higher Order Neural Network (THONN) models, since UGS-HONN and UGC-HONN models to recognize data pattern with error approaching 0.0000%.


This chapter develops a new nonlinear model, ultra high frequency sigmoid and trigonometric higher order neural networks (UGT-HONN), for data pattern recognition. UGT-HONN includes ultra high frequency sigmoid and sine function higher order neural networks (UGS-HONN) and ultra high frequency sigmoid and cosine functions higher order neural networks (UGC-HONN). UGS-HONN and UGC-HONN models are used to recognition data patterns. Results show that UGS-HONN and UGC-HONN models are better than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UGS-HONN and UGC-HONN models can recognize data pattern with error approaching 10-6.


This chapter develops a new nonlinear model, ultra high frequency trigonometric higher order neural networks (UTHONN) for time series data analysis. UTHONN includes three models: UCSHONN (ultra high frequency sine and cosine higher order neural networks) models, UCCHONN (ultra high frequency cosine and cosine higher order neural networks) models, and USSHONN (ultra high frequency sine and sine higher order neural networks) models. Results show that UTHONN models are 3 to 12% better than equilibrium real exchange rates (ERER) model, and 4–9% better than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models. This study also uses UTHONN models to simulate foreign exchange rates and consumer price index with error approaching 10-6.


Sign in / Sign up

Export Citation Format

Share Document