Reduced-Order Observer-Based Robust Fault Estimation for a Class of Uncertain Nonlinear Systems

Author(s):  
Yu Peng ◽  
Gang Xiang
2008 ◽  
Vol 53 (11) ◽  
pp. 2602-2614 ◽  
Author(s):  
Dimitrios Karagiannis ◽  
Daniele Carnevale ◽  
Alessandro Astolfi

Author(s):  
Mohamadreza Homayounzade ◽  
Mehdi Keshmiri

This paper presents a novel reduced-order observer based controller for a class of Lipschitz nonlinear systems, described by a set of second order ordinary differential equations. The control law is designed based on the measured output and estimated states. The main features are: (1) The computation cost is reduced noticeably, since the observer is a reduced-order one; (2) The controller guarantees semi-global exponential stability for both estimation and tracking error; and (3) The proposed method can be used in a large range of applications, especially in mechanical systems. The effectiveness of the proposed method is investigated through the numerical simulation for a two-degrees-of-freedom robot manipulator acting on a horizontal worktable.


Sign in / Sign up

Export Citation Format

Share Document