Image Fusion Based on Morphological Component Analysis via Gradient

Author(s):  
Shuai Chen ◽  
Yixiang Lu ◽  
Qingwei Gao ◽  
Dong Sun ◽  
Xueming Peng
Author(s):  
Peng Guo ◽  
Guoqi Xie ◽  
Renfa Li ◽  
Hui Hu

In feature-level image fusion, deep learning technology, particularly convolutional sparse representation (SR) theory, has emerged as a new topic over the past three years. This paper proposes an effective image fusion method based on convolution SR, namely, convolutional sparsity-based morphological component analysis and guided filter (CS-MCA-GF). The guided filter operator and choose-max coefficient fusion scheme introduced in this method can effectively eliminate the artifacts generated by the morphological components in the linear fusion, and maintain the pixel saliency of the source images. Experiments show that the proposed method can achieve an excellent performance in multi-modal image fusion, which includes medical image fusion.


2017 ◽  
Vol 14 (8) ◽  
pp. 795-807
Author(s):  
Georges Laussane Loum ◽  
Atiampo Kodjo Armand ◽  
Pandry Koffi Ghislain ◽  
Souleymane Oumtanaga

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuangeng Tian ◽  
Lu Tang ◽  
Xiao Li ◽  
Kaili Liu ◽  
Jian Wang

This paper proposes a perceptual medical image fusion framework based on morphological component analysis combining convolutional sparsity and pulse-coupled neural network, which is called MCA-CS-PCNN for short. Source images are first decomposed into cartoon components and texture components by morphological component analysis, and a convolutional sparse representation of cartoon layers and texture layers is produced by prelearned dictionaries. Then, convolutional sparsity is used as a stimulus to motivate the PCNN for dealing with cartoon layers and texture layers. Finally, the medical fused image is computed via combining fused cartoon layers and texture layers. Experimental results verify that the MCA-CS-PCNN model is superior to the state-of-the-art fusion strategy.


Sign in / Sign up

Export Citation Format

Share Document