A Survey of Green, Energy-Aware Security and Some of Its Recent Developments in Networking and Mobile Computing

Author(s):  
Mauro Migliardi ◽  
Alessio Merlo ◽  
Luca Caviglione

With the immense growth in the field of mobile communication, a good number of complex applications are now available for the mobile devices. The complex applications are made available to comply with the client demand for the higher performing and higher capable applications, which can be accessible from any locations and any devices. Thus, the application developers have attempted to make highly scaled applications to be deployed on mobile communication devices. The larger applications have higher demand for memory and processing capabilities. Thus, making the similar infrastructure available on the mobile computing environments was always a challenge. Nonetheless, with the availability of distributed computing architecture, the bottleneck for the computing capabilities for these complex applications can be handled. Nonetheless, the memory capabilities for the applications must be addressed more sophisticated manner using distribution of the memory and sharing of the data. Henceforth, distributed caching came under existence.A conveyed cache is an augmentation of the customary idea of cache utilized in a solitary district. A conveyed cache may traverse various servers with the goal that it can develop in size and in value-based limit. It is for the most part used to store application information living in database and web session information.One of the most popular technique for making the cache available is to perform cache discovery operations in the network. A number of parallel research attempts are made to identify the accurate place in the network to create or build the distributed cache network.However, the most of the parallel research attempts are criticised for considering single dimensions for cache discovery as few of the work focuses on distance, few of the work focuses on density and some of the works focuses on page replacement policies applicable on mobile computing environments as MANETs or WSN. Henceforth, the demand of the research is to consider multiple parameters for cache discovery and build a framework to automatically define the cache distribution. Hence, this work proposes a novel architecture or framework to detect the cache distribution based on distance, stale page reduction mechanism and finally the energy optimization. The outcome of the research is to automate the recommendation of cache discovery and increase the network life time by 90% compared to the existing methods for cache discovery. In order to handle the complex processing of the proposed algorithms, this work deploys machine learning methods to reduce the time complexity.


2020 ◽  
Vol 2 (1) ◽  
pp. 17-36 ◽  
Author(s):  
Tokuhisa Kawawaki ◽  
Yuichi Negishi ◽  
Hideya Kawasaki

This review summarizes recent developments in the photo/electro catalytic and photosensitizing characteristics of metal and alloy NCs for green energy and medical applications.


2015 ◽  
Vol 47 (2) ◽  
pp. 1-38 ◽  
Author(s):  
Fanxin Kong ◽  
Xue Liu

2021 ◽  
Vol 2 ◽  
Author(s):  
Swati Das ◽  
Rishabh Raj ◽  
Sovik Das ◽  
Makarand M. Ghangrekar

With the plausible depletion of fossil fuels in the near future and its associated environmental impacts, researchers have instigated the search for eco-friendly renewable bioenergy. Moreover, the increase in water pollution by industrial and anthropogenic activities is another alarming global concern. In this regard, the production of renewable and sustainable green bioenergy utilizing wastewater through microbial electrochemical technologies (METs) can alleviate these crucial problems by providing a sustainable solution to meet both the demands of energy and fresh water supply. Moreover, different bio-centered techniques such as nitrification and denitrification for nitrogen removal, and elimination of carcinogenic metals, pathogens, and organic components utilizing microbiota followed by toxicity sensing of different pollutants have been efficaciously exhibited through METs. However, inferior bioenergy production and recovery of low biomass yield in METs with high operational cost are noteworthy bottlenecks that hinder the scalability of this technology. Therefore, this review elaborates different physicochemical factors affecting the performance of METs, microbial interaction for the development of stable biofilm and so forth. Moreover, a broad overview on the production of bioenergy, along with the removal of pollutants from wastewater through different types of METs are also highlighted. Furthermore, the production of biofuels like ethanol, methanol, biodiesel, and gaseous fuel like bio-H2 coupled with power generation using photosynthetic microorganisms via CO2 sequestration through METs are also discussed. Additionally, recent developments with future scope for the field-scale implementation of METs along with their bottlenecks have been discussed, which has not been critically reviewed to date.


Sign in / Sign up

Export Citation Format

Share Document