Operational Characterization System and Communication Interface for Microelectromechanical (MEM) and Passive Thermal Switches for the MidSTAR Satellite Program

Author(s):  
C.M. Schuster ◽  
M. Beasley ◽  
S. Firebaugh ◽  
D. Farrar ◽  
R. Osiander ◽  
...  
Author(s):  
Yu-Hsin Hsieh ◽  
Maria Borgestig ◽  
Deepika Gopalarao ◽  
Joy McGowan ◽  
Mats Granlund ◽  
...  

Use of eye-gaze assistive technology (EGAT) provides children/youths with severe motor and speech impairments communication opportunities by using eyes to control a communication interface on a computer. However, knowledge about how using EGAT contributes to communication and influences dyadic interaction remains limited. Aim: By video-coding dyadic interaction sequences, this study investigates the impacts of employing EGAT, compared to the Non-EGAT condition on the dyadic communicative interaction. Method: Participants were six dyads with children/youths aged 4–19 years having severe physical disabilities and complex communication needs. A total of 12 film clips of dyadic communication activities with and without EGAT in natural contexts were included. Based on a systematic coding scheme, dyadic communication behaviors were coded to determine the interactional structure and communicative functions. Data were analyzed using a three-tiered method combining group and individual analysis. Results: When using EGAT, children/youths increased initiations in communicative interactions and tended to provide more information, while communication partners made fewer communicative turns, initiations, and requests compared to the Non-EGAT condition. Communication activities, eye-control skills, and communication abilities could influence dyadic interaction. Conclusion: Use of EGAT shows potential to support communicative interaction by increasing children’s initiations and intelligibility, and facilitating symmetrical communication between dyads.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingting Du ◽  
Zixin Xiong ◽  
Luis Delgado ◽  
Weizhi Liao ◽  
Joseph Peoples ◽  
...  

AbstractThermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.


Sign in / Sign up

Export Citation Format

Share Document