2002 ◽  
Vol 16 (1) ◽  
pp. 85-100
Author(s):  
Nicole Bäuerle ◽  
Anja Houdek

We investigate the performance of channel assignment policies for cellular networks. The networks are given by an interference graph which describes the reuse constraints for the channels. In the first part, we derive lower bounds on the expected (weighted) number of blocked calls under any channel assignment policy over finite time intervals as well as in the average case. The lower bounds are solutions of deterministic control problems. As far as the average case is concerned, the control problem can be replaced by a linear program. In the second part, we consider the cellular network in the limit, when the number of available channels as well as the arrival intensities are linearly increased. We show that the network obeys a functional law of large numbers and that a fixed channel assignment policy which can be computed from a linear program is asymptotically optimal. Special networks like fully connected and star networks are considered.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael Preischl

AbstractIn this paper, we present a method to obtain upper and lower bounds on integrals with respect to copulas by solving the corresponding assignment problems (AP’s). In their 2014 paper, Hofer and Iacó proposed this approach for two dimensions and stated the generalization to arbitrary dimensons as an open problem. We will clarify the connection between copulas and AP’s and thus find an extension to the multidimensional case. Furthermore, we provide convergence statements and, as applications, we consider three dimensional dependence measures as well as an example from finance.


2009 ◽  
Vol 19 (06) ◽  
pp. 595-615 ◽  
Author(s):  
MANUEL ABELLANAS ◽  
PROSENJIT BOSE ◽  
JESÚS GARCÍA ◽  
FERRAN HURTADO ◽  
CARLOS M. NICOLÁS ◽  
...  

Given a set P of n points in the plane, the order-k Delaunay graph is a graph with vertex set P and an edge exists between two points p, q ∈ P when there is a circle through p and q with at most k other points of P in its interior. We provide upper and lower bounds on the number of edges in an order-k Delaunay graph. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph. Furthermore, we show that the order-k Delaunay graph is connected under the flip operation when k ≤ 1 but not necessarily connected for other values of k. If P is in convex position then the order-k Delaunay graph is connected for all k ≥ 0. We show that the order-k Gabriel graph, a subgraph of the order-k Delaunay graph, is Hamiltonian for k ≥ 15. Finally, the order-k Delaunay graph can be used to efficiently solve a coloring problem with applications to frequency assignments in cellular networks.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.


Sign in / Sign up

Export Citation Format

Share Document