scholarly journals Bounds on integrals with respect to multivariate copulas

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael Preischl

AbstractIn this paper, we present a method to obtain upper and lower bounds on integrals with respect to copulas by solving the corresponding assignment problems (AP’s). In their 2014 paper, Hofer and Iacó proposed this approach for two dimensions and stated the generalization to arbitrary dimensons as an open problem. We will clarify the connection between copulas and AP’s and thus find an extension to the multidimensional case. Furthermore, we provide convergence statements and, as applications, we consider three dimensional dependence measures as well as an example from finance.

2013 ◽  
Vol 11 (01) ◽  
pp. 1450006 ◽  
Author(s):  
JUAN ÁNGEL ALEDO ◽  
ALFONSO ROMERO ◽  
RAFAEL M. RUBIO

We provide upper and lower bounds for the volume of a compact spacelike hypersurface in an (n + 1)-dimensional Generalized Robertson–Walker (GRW) spacetime in terms of the volume of the fiber, the hyperbolic angle function and the warping function. Under several geometrical and physical assumptions, we characterize the spacelike slices as the only spacelike hypersurfaces where these bounds are attained. As a consequence of these results, we get an upper bound for the first eigenvalue of a compact spacelike surface in a three-dimensional GRW spacetime whose fiber is a topological sphere, which includes the case of the three-dimensional De Sitter spacetime, and show that the bound is attained if and only if M is a spacelike slice.


2008 ◽  
Vol 22 (23) ◽  
pp. 2163-2175 ◽  
Author(s):  
MIKLÓS HORVÁTH

We consider three-dimensional inverse scattering with fixed energy for which the spherically symmetrical potential is nonvanishing only in a ball. We give exact upper and lower bounds for the phase shifts. We provide a variational formula for the Weyl–Titchmarsh m-function of the one-dimensional Schrödinger operator defined on the half-line.


Author(s):  
MADHURI G. KULKARNI ◽  
AKANKSHA S. KASHIKAR

A three-dimensional consecutive (r1, r2, r3)-out-of-(m1, m2, m3):F system was introduced by Akiba et al. [J. Qual. Mainten. Eng.11(3) (2005) 254–266]. They computed upper and lower bounds on the reliability of this system. Habib et al. [Appl. Math. Model.34 (2010) 531–538] introduced a conditional type of two-dimensional consecutive-(r, s)-out-of-(m, n):F system, where the number of failed components in the system at the moment of system failure cannot be more than 2rs. We extend this concept to three dimension and introduce a conditional three-dimensional consecutive (s, s, s)-out-of-(s, s, m):F system. It is an arrangement of ms2 components like a cuboid and it fails if it contains either a cube of failed components of size (s, s, s) or 2s3 failed components. We derive an expression for the signature of this system and also obtain reliability of this system using system signature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Faris Alzahrani ◽  
Ahmed Salem ◽  
Moustafa El-Shahed

AbstractIn the present paper, we introduce sharp upper and lower bounds to the ratio of two q-gamma functions ${\Gamma }_{q}(x+1)/{\Gamma }_{q}(x+s)$ Γ q ( x + 1 ) / Γ q ( x + s ) for all real number s and $0< q\neq1$ 0 < q ≠ 1 in terms of the q-digamma function. Our results refine the results of Ismail and Muldoon (Internat. Ser. Numer. Math., vol. 119, pp. 309–323, 1994) and give the answer to the open problem posed by Alzer (Math. Nachr. 222(1):5–14, 2001). Also, for the classical gamma function, our results give a Kershaw inequality for all $0< s<1$ 0 < s < 1 when letting $q\to 1$ q → 1 and a new inequality for all $s>1$ s > 1 .


Author(s):  
Y. J. SIM ◽  
D. K. THOMAS

Abstract Let f be analytic in the unit disk $\mathbb {D}=\{z\in \mathbb {C}:|z|<1 \}$ and let ${\mathcal S}$ be the subclass of normalised univalent functions with $f(0)=0$ and $f'(0)=1$ , given by $f(z)=z+\sum _{n=2}^{\infty }a_n z^n$ . Let F be the inverse function of f, given by $F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$ for $|\omega |\le r_0(f)$ . Denote by $ \mathcal {S}_p^{* }(\alpha )$ the subset of $ \mathcal {S}$ consisting of the spirallike functions of order $\alpha $ in $\mathbb {D}$ , that is, functions satisfying $$\begin{align*}{\mathrm{Re}} \ \bigg\{e^{-i\gamma}\dfrac{zf'(z)}{f(z)}\bigg\}>\alpha\cos \gamma, \end{align*}$$ for $z\in \mathbb {D}$ , $0\le \alpha <1$ and $\gamma \in (-\pi /2,\pi /2)$ . We give sharp upper and lower bounds for both $ |a_3|-|a_2| $ and $ |A_3|-|A_2| $ when $f\in \mathcal {S}_p^{* }(\alpha )$ , thus solving an open problem and presenting some new inequalities for coefficient differences.


Author(s):  
Nathan Albin ◽  
Sergio Conti ◽  
Georg Dolzmann

We consider a geometrically nonlinear model for crystal plasticity in two dimensions, with two active slip systems and rigid elasticity. We prove that the rank-1 convex envelope of the condensed energy density is obtained by infinite-order laminates, and express it explicitly via the 2F1 hypergeometric function. We also determine the polyconvex envelope, leading to upper and lower bounds on the quasiconvex envelope. The two bounds differ by less than 2%.


1983 ◽  
Vol 38 (5) ◽  
pp. 493-496 ◽  
Author(s):  
Heinz K. H. Siedentop

Upper and lower bounds on the eigenvalues of Schrödinger operators with simple one and a simple three dimensional potential (well of finite depth, spherical δ-potential) are given by means of a modification of Müller′s variational principle. The estimates, comparing them with the exact eigenvalues, show a localization of the eigenvalues even in a rough approximation for the trial operator.


2021 ◽  
Vol 27 ◽  
pp. 100491
Author(s):  
A.N. Antão ◽  
M. Vicente da Silva ◽  
N. Monteiro ◽  
N. Deusdado

Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Sign in / Sign up

Export Citation Format

Share Document