Web Service Composition in multi-cloud environment: A bi-objective genetic optimization algorithm

Author(s):  
Mirsaeid Hosseini Shirvani
2021 ◽  
Vol 9 (2) ◽  
pp. 65-70
Author(s):  
Laishram Jenny Chanu ◽  
◽  
Arnab Paul ◽  

Lots of Web Services are available which differ in their QoS values but can perform a similar task. Discovery mechanism selects the best Web Service according to their QoS values and functional attributes. Cases arise, where the discovery mechanism fails, as a user’s complex query cannot be satisfied by a single Web Service. This can be solved by Web Service composition where multiple Web Services are combined to give a composite Web Service which meet user’s complex query. Our work is mainly focused on composition of Web Services that efficiently meets the user’s query. Different algorithms have been discussed and used by different researchers in this field. One of the most blooming topics is the use of evolutionary algorithms in optimization problems. In our work, we have chosen Particle Swarm Optimization Algorithm approach to discover the best efficient composition. Then, Weight Improved Particle Swarm Optimization Algorithm is used to improve the results which were found to be quite satisfying and efficient.


2019 ◽  
Vol 53 (2) ◽  
pp. 445-459 ◽  
Author(s):  
Samia Chibani Sadouki ◽  
Abdelkamel Tari

The goal of QoS aware web service composition (QoS-WSC) is to provide new functionalities and find a best combination of services to meet complex needs of users. QoS of the resulting composite service should be optimized. QoS-WSC is a global multi-objective optimization problem belonging to NP-hard class given the number of available services. Most of existing approaches reduce this problem to a single-objective problem by aggregating different objectives, which leads to a loss of information. An alternative issue is to use Pareto-based approaches. The Pareto-optimal set contains solutions that ensure the best trade-off between conflicting objectives. In this paper, a new multi-objective meta-heuristic bio-inspired Pareto-based approach is presented to address the QoS-WSC, it is based on Elephants Herding Optimization (EHO) algorithm. EHO is characterised by a strategy of dividing and combining the population to sub population (clan) which allows exchange of information between local searches to get a global optimum. However, the application of others evolutionary algorithms to this problem cannot avoids the early stagnancy in a local optimum. In this paper a discrete and multi-objective version of EHO will be presented based on a crossover operator. Compared with SPEA2 (Strength Pareto Evolutionary Algorithm 2) and MOPSO (Multi-Objective Particle Swarm Optimization algorithm), the results of experimental evaluation show that our improvements significantly outperform the existing algorithms in term of Hypervolume, Set Coverage and Spacing metrics.


Sign in / Sign up

Export Citation Format

Share Document