Fine-grained document sharing using attribute-based encryption in cloud servers

Author(s):  
Dongyang Xu ◽  
Fengying Luo ◽  
Lin Gao ◽  
Zhi Tang
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuan Liu ◽  
Yun Pan ◽  
Lize Gu ◽  
Yuan Zhang ◽  
Dezhi An

Attribute-based encryption (ABE) is a good choice for one-to-many communication and fine-grained access control of the encryption data in a cloud environment. Fully homomorphic encryption (FHE) allows cloud servers to make valid operations on encrypted data without decrypting. Attribute-based fully homomorphic encryption (ABFHE) from lattices not only combines the bilateral advantages/facilities of ABE and FHE but also can resist quantum attacks. However, in the most previous ABFHE schemes, the growth of ciphertext size usually depends on the total number of system’s attributes which leads to high communication overhead and long running time of encryption and decryption. In this paper, based on the LWE problem on lattices, we propose an attribute-based fully homomorphic scheme with short ciphertext. More specifically, by classifying the system’s attributes and using the special structure matrix in MP12, we remove the dependency of ciphertext size on system’s attributes ℓ and the ciphertext size is no longer increased with the total number of system’s attributes. In addition, by introducing the function G − 1 in the homomorphic operations, we completely rerandomize the error term in the new ciphertext and have a very tight and simple error analysis using sub-Gaussianity. Besides, performance analysis shows that when ℓ = 2 and n = 284 according to the parameter suggestion given by Micciancio and Dai et al., the size of ciphertext in our scheme is reduced by at least 73.3%, not to mention ℓ > 2 . The larger the ℓ , the more observable of our scheme. The short ciphertext in our construction can not only reduce the communication overhead but also reduce the running time of encryption and decryption. Finally, our scheme is proved to be secure in the standard model.


2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Han-Yu Lin ◽  
Yan-Ru Jiang

Population aging is currently a tough problem of many countries. How to utilize modern technologies (including both information and medical technologies) to improve the service quality of health information is an important issue. Personal Health Record (PHR) could be regarded as a kind of health information records of individuals. A ciphertext policy attribute-based encryption (CP-ABE) is a cryptographic primitive for fine-grained access control of outsourced data in clouds. In order to enable patients to effectively store his medical records and PHR data in medical clouds, we propose an improved multi-user CP-ABE scheme with the functionality of keyword search which enables data users to seek for specific ciphertext in the cloud server by using a specific keyword. Additionally, we adopt an independent proxy server in the proposed system architecture to isolate the communication between clients and the cloud server, so as to prevent cloud servers from suffering direct attacks and also reduce the computational loading of cloud servers. Compared with the previous approach, the proposed encryption algorithm takes less running time and the ciphertext length is also relatively short. Moreover, the procedures of re-encryption and pre-decryption only require one exponentiation computation, respectively.


Author(s):  
P. Sudheer ◽  
T. Lakshmi Surekha

Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been to secure the cloud storage. Data content privacy. A semi anonymous privilege control scheme AnonyControl to address not only the data privacy. But also the user identity privacy. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semi anonymity. The  Anonymity –F which fully prevent the identity leakage and achieve the full anonymity.


2017 ◽  
Vol E100.D (10) ◽  
pp. 2432-2439
Author(s):  
Yoshiaki SHIRAISHI ◽  
Kenta NOMURA ◽  
Masami MOHRI ◽  
Takeru NARUSE ◽  
Masakatu MORII

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xueyan Liu ◽  
Yukun Luo ◽  
Xiaotao Yang

The growing need to store, share, and manage medical and health records has resulted in electronic medical health sharing system (mHealth), which provides intelligent medical treatment for people. Attribute-based encryption (ABE) is regarded as a new cryptology to enhance fine-grained access control over encrypted sharing data in mHealth. However, some existing attribute-based mHealth systems not only violate the one-to-many application characteristics of attribute-based encryption mechanism but also destroy the anonymity of user. In this study, an efficient scheme is proposed to tackle the above defaults and offer two-way anonymity of data owner and data user by introducing a pseudoidentity. The computation of hidden access policy is reduced by removing the bilinear pairing, whereas the interaction between cloud storage and data user is avoided to save bandwidth during trapdoor generation. We also consider the temporal factor of the uploaded information by introducing access validity. Security and performance analyses show that the proposed scheme is efficient without reducing security.


2019 ◽  
Vol 62 (12) ◽  
pp. 1748-1760 ◽  
Author(s):  
Yang Chen ◽  
Wenmin Li ◽  
Fei Gao ◽  
Wei Yin ◽  
Kaitai Liang ◽  
...  

AbstractOnline data sharing has become a research hotspot while cloud computing is getting more and more popular. As a promising encryption technique to guarantee the security shared data and to realize flexible fine-grained access control, ciphertext-policy attribute-based encryption (CP-ABE) has drawn wide attentions. However, there is a drawback preventing CP-ABE from being applied to cloud applications. In CP-ABE, the access structure is included in the ciphertext, and it may disclose user’s privacy. In this paper, we find a more efficient method to connect ABE with inner product encryption and adopt several techniques to ensure the expressiveness of access structure, the efficiency and security of our scheme. We are the first to present a secure, efficient fine-grained access control scheme with hidden access structure, the access structure can be expressed as AND-gates on multi-valued attributes with wildcard. We conceal the entire attribute instead of only its values in the access structure. Besides, our scheme has obvious advantages in efficiency compared with related schemes. Our scheme can make data sharing secure and efficient, which can be verified from the analysis of security and performance.


Author(s):  
Mamta ­ ◽  
Brij B. Gupta

Attribute based encryption (ABE) is a widely used technique with tremendous application in cloud computing because it provides fine-grained access control capability. Owing to this property, it is emerging as a popular technique in the area of searchable encryption where the fine-grained access control is used to determine the search capabilities of a user. But, in the searchable encryption schemes developed using ABE it is assumed that the access structure is monotonic which contains AND, OR and threshold gates. Many ABE schemes have been developed for non-monotonic access structure which supports NOT gate, but this is the first attempt to develop a searchable encryption scheme for the same. The proposed scheme results in fast search and generates secret key and search token of constant size and also the ciphertext components are quite fewer than the number of attributes involved. The proposed scheme is proven secure against chosen keyword attack (CKA) in selective security model under Decisional Bilinear Diffie-Hellman (DBDH) assumption.


2019 ◽  
Vol 62 (12) ◽  
pp. 1849-1862
Author(s):  
San Ling ◽  
Khoa Nguyen ◽  
Huaxiong Wang ◽  
Juanyang Zhang

Abstract Efficient user revocation is a necessary but challenging problem in many multi-user cryptosystems. Among known approaches, server-aided revocation yields a promising solution, because it allows to outsource the major workloads of system users to a computationally powerful third party, called the server, whose only requirement is to carry out the computations correctly. Such a revocation mechanism was considered in the settings of identity-based encryption and attribute-based encryption by Qin et al. (2015, ESORICS) and Cui et al. (2016, ESORICS ), respectively. In this work, we consider the server-aided revocation mechanism in the more elaborate setting of predicate encryption (PE). The latter, introduced by Katz et al. (2008, EUROCRYPT), provides fine-grained and role-based access to encrypted data and can be viewed as a generalization of identity-based and attribute-based encryption. Our contribution is 2-fold. First, we formalize the model of server-aided revocable PE (SR-PE), with rigorous definitions and security notions. Our model can be seen as a non-trivial adaptation of Cui et al.’s work into the PE context. Second, we put forward a lattice-based instantiation of SR-PE. The scheme employs the PE scheme of Agrawal et al. (2011, ASIACRYPT) and the complete subtree method of Naor et al. (2001, CRYPTO) as the two main ingredients, which work smoothly together thanks to a few additional techniques. Our scheme is proven secure in the standard model (in a selective manner), based on the hardness of the learning with errors problem.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mingsheng Cao ◽  
Luhan Wang ◽  
Zhiguang Qin ◽  
Chunwei Lou

The wireless body area networks (WBANs) have emerged as a highly promising technology that allows patients’ demographics to be collected by tiny wearable and implantable sensors. These data can be used to analyze and diagnose to improve the healthcare quality of patients. However, security and privacy preserving of the collected data is a major challenge on resource-limited WBANs devices and the urgent need for fine-grained search and lightweight access. To resolve these issues, in this paper, we propose a lightweight fine-grained search over encrypted data in WBANs by employing ciphertext policy attribute based encryption and searchable encryption technologies, of which the proposed scheme can provide resource-constraint end users with fine-grained keyword search and lightweight access simultaneously. We also formally define its security and prove that it is secure against both chosen plaintext attack and chosen keyword attack. Finally, we make a performance evaluation to demonstrate that our scheme is much more efficient and practical than the other related schemes, which makes the scheme more suitable for the real-world applications.


2020 ◽  
Author(s):  
Zhen Liu ◽  
Qiong Huang ◽  
Duncan S Wong

Abstract Attribute-based encryption (ABE) is a versatile one-to-many encryption primitive, which enables fine-grained access control over encrypted data. Due to its promising applications in practice, ABE schemes with high efficiency, security and expressivity have been continuously emerging. On the other hand, due to the nature of ABE, a malicious user may abuse its decryption privilege. Therefore, being able to identify such a malicious user is crucial towards the practicality of ABE. Although some specific ABE schemes in the literature enjoys the tracing function, they are only proceeded case by case. Most of the ABE schemes do not support traceability. It is thus meaningful and important to have a generic way of equipping any ABE scheme with traceability. In this work, we partially solve the aforementioned problem. Namely, we propose a way of transforming (non-traceable) ABE schemes satisfying certain requirements to fully collusion-resistant black-box traceable ABE schemes, which adds only $O(\sqrt{\mathcal{K}})$ elements to the ciphertext where ${\mathcal{K}}$ is the number of users in the system. And to demonstrate the practicability of our transformation, we show how to convert a couple of existing non-traceable ABE schemes to support traceability.


Sign in / Sign up

Export Citation Format

Share Document