Large-Scale Parallel Monte Carlo Tree Search on GPU

Author(s):  
Kamil Rocki ◽  
Reiji Suda
2020 ◽  
Vol 32 (18) ◽  
pp. 15191-15207 ◽  
Author(s):  
Xuze Liu ◽  
Abbas Fotouhi

Abstract Energy management has been one of the most important parts in electric race strategies since the Fédération Internationale de l’Automobile Formula-E championships were launched in 2014. Since that time, a number of unfavorable race finishes have been witnessed due to poor energy management. Previous researches have been focused on managing the power flow between different energy sources or different energy consumers based on a fixed cycle. However, there is no published work in the literature about energy management of a full electric racing car on repeated course but with changeable settings and driving styles. Different from traditional energy management problems, the electric race strategy is more of a multi-stage decision-making problem which has a very large scale. Meanwhile, this is a time-critical task in motorsport where fast prediction tools are needed and decisions have to be made in seconds to benefit the final outcome of the race. In this study, the use of artificial neural networks (ANN) and tree search techniques is investigated as an approach to solve such a large-scale problem. ANN prediction models are developed to replace the traditional lap time simulation as a much faster performance prediction tool. Implementation of Monte Carlo tree search based on the proposed ANN fast prediction models has provided decent capability to generate decision-making solution for both pre-race planning and in-race reaction to unexpected scenarios.


2020 ◽  
Vol 34 (06) ◽  
pp. 9983-9991
Author(s):  
Linnan Wang ◽  
Yiyang Zhao ◽  
Yuu Jinnai ◽  
Yuandong Tian ◽  
Rodrigo Fonseca

Neural Architecture Search (NAS) has shown great success in automating the design of neural networks, but the prohibitive amount of computations behind current NAS methods requires further investigations in improving the sample efficiency and the network evaluation cost to get better results in a shorter time. In this paper, we present a novel scalable Monte Carlo Tree Search (MCTS) based NAS agent, named AlphaX, to tackle these two aspects. AlphaX improves the search efficiency by adaptively balancing the exploration and exploitation at the state level, and by a Meta-Deep Neural Network (DNN) to predict network accuracies for biasing the search toward a promising region. To amortize the network evaluation cost, AlphaX accelerates MCTS rollouts with a distributed design and reduces the number of epochs in evaluating a network by transfer learning, which is guided with the tree structure in MCTS. In 12 GPU days and 1000 samples, AlphaX found an architecture that reaches 97.84% top-1 accuracy on CIFAR-10, and 75.5% top-1 accuracy on ImageNet, exceeding SOTA NAS methods in both the accuracy and sampling efficiency. Particularly, we also evaluate AlphaX on NASBench-101, a large scale NAS dataset; AlphaX is 3x and 2.8x more sample efficient than Random Search and Regularized Evolution in finding the global optimum. Finally, we show the searched architecture improves a variety of vision applications from Neural Style Transfer, to Image Captioning and Object Detection.


Sign in / Sign up

Export Citation Format

Share Document