Adaptive output feedback attitude control of a LEO satellite under angular velocity constraints

Author(s):  
Abolfazl Shahrooei ◽  
Mohammad Hosein Kazemi
2017 ◽  
Vol 40 (10) ◽  
pp. 3023-3039 ◽  
Author(s):  
Qun Zong ◽  
Shikai Shao ◽  
Bailing Tian ◽  
Xiuyun Zhang ◽  
Wenjing Liu

Distributed attitude control for spacecraft formation without angular velocity measurement is complicated and challenging. Based on nonsingular terminal sliding mode, this paper designs two kinds of finite-time attitude synchronization controllers with inertia uncertainties and external disturbances. Aiming at calculating angular velocity in finite time, a nonlinear state observer and an angular velocity calculation algorithm are firstly developed. Then, two strategies for estimating reference signals and two distributed output feedback controllers, based on continuous adaptive technology and adaptive disturbance observer, are designed respectively. Different from existing results, the controllers are inherently continuous and the control chattering is greatly reduced. Also, the designed nonlinear observers need no prior knowledge on the upper bound of uncertain state and are proved finite-time convergent via Lyapunov theory. Finally, simulations and comparisons demonstrate the effectiveness of the proposed schemes.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zijun Gao ◽  
Jin Wang ◽  
Yaping Tian

This paper investigates the adaptive output feedback attitude control of a quadrotor. First, a nonsingular terminal sliding-mode variable and auxiliary variable are introduced into a closed-loop structure. Meanwhile, a fuzzy logic system is incorporated into an adaptive algorithm to compensate for the adverse influence caused by lumped disturbances including system uncertainty and external disturbances on the attitude adjustment performance of a quadrotor. Then, a novel finite-time output feedback controller equipped with the saturation suppression algorithm is designed. Rigorous proof shows that the design control strategy ensures the closed-loop system stability and guarantees the attitude of the spacecraft to track desired command signals in finite time. Simulation results are presented to illustrate the performance of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document