scholarly journals Design study of low loss single-mode hollow core photonic crystal terahertz waveguide with support bridges

Author(s):  
Binbin Hong ◽  
Nutapong Somjit ◽  
John Cunningham ◽  
Ian Robertson
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Foued Amrani ◽  
Jonas H. Osório ◽  
Frédéric Delahaye ◽  
Fabio Giovanardi ◽  
Luca Vincetti ◽  
...  

AbstractRemarkable recent demonstrations of ultra-low-loss inhibited-coupling (IC) hollow-core photonic-crystal fibres (HCPCFs) established them as serious candidates for next-generation long-haul fibre optics systems. A hindrance to this prospect and also to short-haul applications such as micromachining, where stable and high-quality beam delivery is needed, is the difficulty in designing and fabricating an IC-guiding fibre that combines ultra-low loss, truly robust single-modeness, and polarisation-maintaining operation. The design solutions proposed to date require a trade-off between low loss and truly single-modeness. Here, we propose a novel IC-HCPCF for achieving low-loss and effective single-mode operation. The fibre is endowed with a hybrid cladding composed of a Kagome-tubular lattice (HKT). This new concept of a microstructured cladding allows us to significantly reduce the confinement loss and, at the same time, preserve truly robust single-mode operation. Experimental results show an HKT-IC-HCPCF with a minimum loss of 1.6 dB/km at 1050 nm and a higher-order mode extinction ratio as high as 47.0 dB for a 10 m long fibre. The robustness of the fibre single-modeness is tested by moving the fibre and varying the coupling conditions. The design proposed herein opens a new route for the development of HCPCFs that combine robust ultra-low-loss transmission and single-mode beam delivery and provides new insight into IC guidance.


2009 ◽  
Vol 17 (26) ◽  
pp. 23468 ◽  
Author(s):  
J. K. Lyngsø ◽  
B. J. Mangan ◽  
C. Jakobsen ◽  
P. J. Roberts

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Md. Arif Hossain ◽  
Syed Iftekhar Ali ◽  
Jakeya Sultana ◽  
Md. Saiful Islam

AbstractA novel photonic crystal fiber (PCF) based on TOPAS, consisting only rectangular slots is presented and analyzed in this paper. The PCF promises not only an extremely low effective material loss (EML) but also a flattened dispersion over a broad frequency range. The modal characteristics of the proposed fiber have been thoroughly investigated using finite element method. The fiber confirms a low EML of 0.009 to 0.01 cm−1 in the frequency range of 0.77–1.05 THz and a flattened dispersion of 0.22±0.01 ps/THz/cm. Besides, some other significant characteristics like birefringence, single mode operation and confinement loss have also been inspected. The simplicity of the fiber makes it easily realizable using the existing fabrication technologies. Thus it is anticipated that the new fiber has the potential to ensure polarization preserving transmission of terahertz signals and to serve as an efficient medium in the terahertz frequency range.


2012 ◽  
Vol 20 (22) ◽  
pp. 24465 ◽  
Author(s):  
Tao Zhu ◽  
Fufeng Xiao ◽  
Laicai Xu ◽  
Min Liu ◽  
Ming Deng ◽  
...  

2006 ◽  
Author(s):  
Ronald Holzlöhner ◽  
Brian Mangan ◽  
Domenico Bonaccini Calia ◽  
Wolfgang Hackenberg

2010 ◽  
Vol 37 (6) ◽  
pp. 1589-1593
Author(s):  
李宏雷 Li Honglei ◽  
娄淑琴 Lou Shuqin ◽  
郭铁英 Guo Tieying ◽  
王立文 Wang Liwen ◽  
陈卫国 Chen Weiguo ◽  
...  

2015 ◽  
Vol 44 (3) ◽  
pp. 306003
Author(s):  
董阳箭 DONG Yang-jian ◽  
戴世勋 DAI Shi-xun ◽  
张培晴 ZHANG Pei-qing ◽  
刘永兴 LIU Yong-xing ◽  
杨佩龙 YANG Pei-long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document