An extension of thin-plate splines for image registration with radial basis functions

Author(s):  
Karl Rohr ◽  
Stefan Worz
2007 ◽  
Vol 05 (02) ◽  
pp. 95-122 ◽  
Author(s):  
M. N. BENBOURHIM ◽  
A. BOUHAMIDI

The paper deals with a div-curl approximation problem by weighted minimizing splines. The weighted minimizing splines are an extension of the well-known thin plate splines and are radial basis functions which allow the approximation or the interpolation of a scalar function from given scattered data. In this paper, we show that the theory of the weighted minimizing splines may also be used for the approximation or for the interpolation of a vector field controlled by the divergence and the curl of the vector field. Numerical examples are given to show the efficiency of this method.


Author(s):  
SHIN YOSHIZAWA ◽  
SATOKO TAKEMOTO ◽  
MIWA TAKAHASHI ◽  
MAKOTO MUROI ◽  
SAYAKA KAZAMI ◽  
...  

We propose a novel approach to 3D image registration of intracellular volumes. The approach extends a standard image registration framework to the curved cell geometry. An intracellular volume is mapped onto another intracellular domain by using two pairs of point set surfaces approximating their nuclear and plasma membranes. The mapping function consists of the affine transformation, tetrahedral barycentric interpolation, and least-squares formulation of radial basis functions for extracted cell geometry features. An interactive volume registration system is also developed based on our approach. We demonstrate that our approach is capable of creating cell models containing multiple organelles from observed data of living cells.


Author(s):  
Lanling Ding ◽  
Zhiyong Liu ◽  
Qiuyan Xu

The radial basis functions meshfree method is a research method for thin plate problem which has gradually developed into a more mature meshfree method. It includes finite element, radial basis functions meshfree collocation method, etc. In this paper, we introduce the multilevel radial basis function collocation method for the fourth-order thin plate problem. We use nonsymmetric Kansa multilevel radial basis function collocation method to solve the fourth-order thin plate problem. Two numerical examples based on Wendland’s [Formula: see text] and [Formula: see text] functions are given to examine that the convergence of the multilevel radial basis function collocation method which is good for solving the fourth-order thin plate problem.


2006 ◽  
Vol 17 (08) ◽  
pp. 1151-1169 ◽  
Author(s):  
A. DURMUS ◽  
I. BOZTOSUN ◽  
F. YASUK

The numerical solutions of the unsteady transient-convective diffusion problems are investigated by using multiquadric (MQ) and thin-plate spline (TPS) radial basis functions (RBFs) based on mesh-free collocation methods with global basis functions. The results of radial basis functions are compared with the mesh-dependent boundary element and finite difference methods as well as the analytical solution for high Péclet numbers. It is reported that for low Péclet numbers, MQ-RBF provides excellent agreement, while for high Péclet numbers, TPS-RBF is better than MQ-RBF.


2012 ◽  
Vol 39 (11) ◽  
pp. 6542-6549 ◽  
Author(s):  
Nadezhda Shusharina ◽  
Gregory Sharp

Sign in / Sign up

Export Citation Format

Share Document