Towards Continuous Domain Adaptation For Medical Imaging

Author(s):  
Rahul Venkataramani ◽  
Hariharan Ravishankar ◽  
Saihareesh Anamandra
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


2021 ◽  
Vol 106 ◽  
pp. 104079
Author(s):  
Mark Schutera ◽  
Frank M. Hafner ◽  
Jochen Abhau ◽  
Veit Hagenmeyer ◽  
Ralf Mikut ◽  
...  

2020 ◽  
Vol 29 (01) ◽  
pp. 129-138 ◽  
Author(s):  
Anirudh Choudhary ◽  
Li Tong ◽  
Yuanda Zhu ◽  
May D. Wang

Introduction: There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity and varying imaging protocols. Domain adaptation (DA) has been developed to transfer the knowledge from a labeled data domain to a related but unlabeled domain in either image space or feature space. DA is a type of transfer learning (TL) that can improve the performance of models when applied to multiple different datasets. Objective: In this survey, we review the state-of-the-art DL-based DA methods for medical imaging. We aim to summarize recent advances, highlighting the motivation, challenges, and opportunities, and to discuss promising directions for future work in DA for medical imaging. Methods: We surveyed peer-reviewed publications from leading biomedical journals and conferences between 2017-2020, that reported the use of DA in medical imaging applications, grouping them by methodology, image modality, and learning scenarios. Results: We mainly focused on pathology and radiology as application areas. Among various DA approaches, we discussed domain transformation (DT) and latent feature-space transformation (LFST). We highlighted the role of unsupervised DA in image segmentation and described opportunities for future development. Conclusion: DA has emerged as a promising solution to deal with the lack of annotated training data. Using adversarial techniques, unsupervised DA has achieved good performance, especially for segmentation tasks. Opportunities include domain transferability, multi-modal DA, and applications that benefit from synthetic data.


NeuroImage ◽  
2019 ◽  
Vol 194 ◽  
pp. 1-11 ◽  
Author(s):  
Christian S. Perone ◽  
Pedro Ballester ◽  
Rodrigo C. Barros ◽  
Julien Cohen-Adad

Author(s):  
Nadine Barrie Smith ◽  
Andrew Webb
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document