unsupervised domain adaptation
Recently Published Documents


TOTAL DOCUMENTS

613
(FIVE YEARS 490)

H-INDEX

29
(FIVE YEARS 13)

2022 ◽  
Vol 169 ◽  
pp. 108648
Author(s):  
Yuping Wu ◽  
Wenjun Lv ◽  
Zerui Li ◽  
Ji Chang ◽  
Xiaochuan Li ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Hongyu Wang ◽  
Hong Gu ◽  
Pan Qin ◽  
Jia Wang

Deep learning has achieved considerable success in medical image segmentation. However, applying deep learning in clinical environments often involves two problems: (1) scarcity of annotated data as data annotation is time-consuming and (2) varying attributes of different datasets due to domain shift. To address these problems, we propose an improved generative adversarial network (GAN) segmentation model, called U-shaped GAN, for limited-annotated chest radiograph datasets. The semi-supervised learning approach and unsupervised domain adaptation (UDA) approach are modeled into a unified framework for effective segmentation. We improve GAN by replacing the traditional discriminator with a U-shaped net, which predicts each pixel a label. The proposed U-shaped net is designed with high resolution radiographs (1,024 × 1,024) for effective segmentation while taking computational burden into account. The pointwise convolution is applied to U-shaped GAN for dimensionality reduction, which decreases the number of feature maps while retaining their salient features. Moreover, we design the U-shaped net with a pretrained ResNet-50 as an encoder to reduce the computational burden of training the encoder from scratch. A semi-supervised learning approach is proposed learning from limited annotated data while exploiting additional unannotated data with a pixel-level loss. U-shaped GAN is extended to UDA by taking the source and target domain data as the annotated data and the unannotated data in the semi-supervised learning approach, respectively. Compared to the previous models dealing with the aforementioned problems separately, U-shaped GAN is compatible with varying data distributions of multiple medical centers, with efficient training and optimizing performance. U-shaped GAN can be generalized to chest radiograph segmentation for clinical deployment. We evaluate U-shaped GAN with two chest radiograph datasets. U-shaped GAN is shown to significantly outperform the state-of-the-art models.


2022 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Chen Chen ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


2021 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Cong Fu ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


2021 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Cong Fu ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


Sign in / Sign up

Export Citation Format

Share Document