A weighted-graph based approach for solving the cold start problem in collaborative recommender systems

Author(s):  
Nassira Chekkai ◽  
Salim Chikhi ◽  
Hamamache Kheddouci
Author(s):  
Navin Tatyaba Gopal ◽  
Anish Raj Khobragade

The Knowledge graphs (KGs) catches structured data and relationships among a bunch of entities and items. Generally, constitute an attractive origin of information that can advance the recommender systems. But, present methodologies of this area depend on manual element thus don’t permit for start to end training. This article proposes, Knowledge Graph along with Label Smoothness (KG-LS) to offer better suggestions for the recommender Systems. Our methodology processes user-specific entities by prior application of a function capability that recognizes key KG-relationships for a specific user. In this manner, we change the KG in a specific-user weighted graph followed by application of a graph neural network to process customized entity embedding. To give better preliminary predisposition, label smoothness comes into picture, which places items in the KG which probably going to have identical user significant names/scores. Use of, label smoothness gives regularization above the edge weights thus; we demonstrate that it is comparable to a label propagation plan on the graph. Additionally building-up a productive usage that symbolizes solid adaptability concerning the size of knowledge graph. Experimentation on 4 datasets shows that our strategy beats best in class baselines. This process likewise accomplishes solid execution in cold start situations where user-entity communications remain meager.


2014 ◽  
Vol 41 (4) ◽  
pp. 2065-2073 ◽  
Author(s):  
Blerina Lika ◽  
Kostas Kolomvatsos ◽  
Stathes Hadjiefthymiades

Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Sultan Alfarhood ◽  
Susan Gauch ◽  
Kevin Labille

Recommender systems can utilize Linked Open Data (LOD) to overcome some challenges, such as the item cold start problem, as well as the problem of explaining the recommendation. There are several techniques in exploiting LOD in recommender systems; one approach, called Linked Data Semantic Distance (LDSD), considers nearby resources to be recommended by calculating a semantic distance between resources. The LDSD approach, however, has some drawbacks such as its inability to measure the semantic distance resources that are not directly linked to each other. In this paper, we first propose another variation of the LDSD approach, called wtLDSD, by extending indirect distance calculations to include the effect of multiple links of differing properties within LOD, while prioritizing link properties. Next, we introduce an approach that broadens the coverage of LDSD-based approaches beyond resources that are more than two links apart. Our experimental results show that approaches we propose improve the accuracy of the LOD-based recommendations over our baselines. Furthermore, the results show that the propagation of semantic distance calculation to reflect resources further away in the LOD graph extends the coverage of LOD-based recommender systems.


2020 ◽  
Vol 536 ◽  
pp. 156-170 ◽  
Author(s):  
J. Herce-Zelaya ◽  
C. Porcel ◽  
J. Bernabé-Moreno ◽  
A. Tejeda-Lorente ◽  
E. Herrera-Viedma

Sign in / Sign up

Export Citation Format

Share Document