Prediction Interval Construction for Multivariate Point Forecasts Using Deep Learning

Author(s):  
Thabang Mathonsi ◽  
Terence L van Zyl
Forecasting ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 1-25
Author(s):  
Thabang Mathonsi ◽  
Terence L. van Zyl

Hybrid methods have been shown to outperform pure statistical and pure deep learning methods at forecasting tasks and quantifying the associated uncertainty with those forecasts (prediction intervals). One example is Exponential Smoothing Recurrent Neural Network (ES-RNN), a hybrid between a statistical forecasting model and a recurrent neural network variant. ES-RNN achieves a 9.4% improvement in absolute error in the Makridakis-4 Forecasting Competition. This improvement and similar outperformance from other hybrid models have primarily been demonstrated only on univariate datasets. Difficulties with applying hybrid forecast methods to multivariate data include (i) the high computational cost involved in hyperparameter tuning for models that are not parsimonious, (ii) challenges associated with auto-correlation inherent in the data, as well as (iii) complex dependency (cross-correlation) between the covariates that may be hard to capture. This paper presents Multivariate Exponential Smoothing Long Short Term Memory (MES-LSTM), a generalized multivariate extension to ES-RNN, that overcomes these challenges. MES-LSTM utilizes a vectorized implementation. We test MES-LSTM on several aggregated coronavirus disease of 2019 (COVID-19) morbidity datasets and find our hybrid approach shows consistent, significant improvement over pure statistical and deep learning methods at forecast accuracy and prediction interval construction.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1608
Author(s):  
Benjamin Kompa ◽  
Jasper Snoek ◽  
Andrew L. Beam

Uncertainty quantification for complex deep learning models is increasingly important as these techniques see growing use in high-stakes, real-world settings. Currently, the quality of a model’s uncertainty is evaluated using point-prediction metrics, such as the negative log-likelihood (NLL), expected calibration error (ECE) or the Brier score on held-out data. Marginal coverage of prediction intervals or sets, a well-known concept in the statistical literature, is an intuitive alternative to these metrics but has yet to be systematically studied for many popular uncertainty quantification techniques for deep learning models. With marginal coverage and the complementary notion of the width of a prediction interval, downstream users of deployed machine learning models can better understand uncertainty quantification both on a global dataset level and on a per-sample basis. In this study, we provide the first large-scale evaluation of the empirical frequentist coverage properties of well-known uncertainty quantification techniques on a suite of regression and classification tasks. We find that, in general, some methods do achieve desirable coverage properties on in distribution samples, but that coverage is not maintained on out-of-distribution data. Our results demonstrate the failings of current uncertainty quantification techniques as dataset shift increases and reinforce coverage as an important metric in developing models for real-world applications.


Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


2020 ◽  
Author(s):  
L Pennig ◽  
L Lourenco Caldeira ◽  
C Hoyer ◽  
L Görtz ◽  
R Shahzad ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
A Heinrich ◽  
M Engler ◽  
D Dachoua ◽  
U Teichgräber ◽  
F Güttler
Keyword(s):  

2020 ◽  
Author(s):  
J Suykens ◽  
T Eelbode ◽  
J Daenen ◽  
P Suetens ◽  
F Maes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document