Gaussian Hierarchical Bayesian Clustering Algorithm

Author(s):  
Rafael Eduardo Ruviaro Christ ◽  
Edwin Villanueva Talavera ◽  
Carlos Dias Maciel
2016 ◽  
Vol 19 (03) ◽  
pp. 382-390 ◽  
Author(s):  
Martina Siena ◽  
Alberto Guadagnini ◽  
Ernesto Della Rossa ◽  
Andrea Lamberti ◽  
Franco Masserano ◽  
...  

Summary We present and test a new screening methodology to discriminate among alternative and competing enhanced-oil-recovery (EOR) techniques to be considered for a given reservoir. Our work is motivated by the observation that, even if a considerable variety of EOR techniques was successfully applied to extend oilfield production and lifetime, an EOR project requires extensive laboratory and pilot tests before fieldwide implementation and preliminary assessment of EOR potential in a reservoir is critical in the decision-making process. Because similar EOR techniques may be successful in fields sharing some global features, as basic discrimination criteria, we consider fluid (density and viscosity) and reservoir-formation (porosity, permeability, depth, and temperature) properties. Our approach is observation-driven and grounded on an exhaustive database that we compiled after considering worldwide EOR field experiences. A preliminary reduction of the dimensionality of the parameter space over which EOR projects are classified is accomplished through principal-component analysis (PCA). A screening of target analogs is then obtained by classification of documented EOR projects through a Bayesian-clustering algorithm. Considering the cluster that includes the EOR field under evaluation, an intercluster refinement is then accomplished by ordering cluster components on the basis of a weighted Euclidean distance from the target field in the (multidimensional) parameter space. Distinctive features of our methodology are that (a) all screening analyses are performed on the database projected onto the space of principal components (PCs) and (b) the fraction of variance associated with each PC is taken as weight of the Euclidean distance that we determine. As a test bed, we apply our approach on three fields operated by Eni. These include light-, medium-, and heavy-oil reservoirs, where gas, chemical, and thermal EOR projects were, respectively, proposed. Our results are (a) conducive to the compilation of a broad and extensively usable database of EOR settings and (b) consistent with the field observations related to the three tested and already planned/implemented EOR methodologies, thus demonstrating the effectiveness of our approach.


2016 ◽  
Author(s):  
Eric Lombaert ◽  
Thomas Guillemaud ◽  
Emeline Deleury

AbstractPopulation genetic methods are widely used to retrace the introduction routes of invasive species. The unsupervised Bayesian clustering algorithm implemented in STRUCTURE is amongst the most frequently use of these methods, but its ability to provide reliable information about introduction routes has never been assessed. We used computer simulations of microsatellite datasets to evaluate the extent to which the clustering results provided by STRUCTURE were misleading for the inference of introduction routes. We focused on the simple case of an invasion scenario involving one native population and two independently introduced populations, because it is the sole scenario with two introduced populations that can be rejected when obtaining a particular clustering with a STRUCTURE analysis at K = 2 (two clusters). Results were classified as “misleading” or “non-misleading”. We then investigated the influence of two demographic parameters (effective size and bottleneck severity) and different numbers of loci on the type and frequency of misleading results. We showed that misleading STRUCTURE results were obtained for 10% of our simulated datasets and at a frequency of up to 37% for some combinations of parameters. Our results highlighted two different categories of misleading output. The first occurs in situations in which the native population has a low level of diversity. In this case, the two introduced populations may be very similar, despite their independent introduction histories. The second category results from convergence issues in STRUCTURE for K = 2, with strong bottleneck severity and/or large numbers of loci resulting in high levels of differentiation between the three populations.


2020 ◽  
Vol 7 (4) ◽  
pp. 2631-2641
Author(s):  
Zhitao Guan ◽  
Zefang Lv ◽  
Xianwen Sun ◽  
Longfei Wu ◽  
Jun Wu ◽  
...  

2021 ◽  
Author(s):  
Daniel Kang ◽  
Christopher S Coffey ◽  
Brian J Smith ◽  
Ying Yuan ◽  
Qian Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document