Real-time transient stability assessment of a power system during energy generation shortfall

Author(s):  
Y. Yare ◽  
G. K. Venayagamoorthy
2010 ◽  
Vol 108-111 ◽  
pp. 765-770
Author(s):  
Lin Niu ◽  
Jian Guo Zhao ◽  
Ke Jun Li ◽  
Zhen Yu Zhou

One of the most challenging problems in real-time operation of power system is the prediction of transient stability. Fast and accurate techniques are imperative to achieve on-line transient stability assessment (TSA). This problem has been approached by various machine learning algorithms, however they find a class decision estimate rather than a probabilistic confidence of the class distribution. To counter the shortcoming of common machine learning methods, a novel machine learning technique, i.e. ‘relevance vector machine’ (RVM), for TSA is presented in this paper. RVM is based on a probabilistic Bayesian learning framework, and as a feature it can yield a decision function that depends on only a very fewer number of so-called relevance vectors. The proposed method is tested on New England power system, and compared with a state-of-the-art ‘support vector machine’ (SVM) classifier. The classification performance is evaluated using false discriminate rate (FDR). It is demonstrated that the RVM classifier can yield a decision function that is much sparser than the SVM classifier while providing higher classification accuracy. Consequently, the RVM classifier greatly reduces the computational complexity, making it more suitable for real-time implementation.


2018 ◽  
Vol 7 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Wei HU ◽  
Zongxiang LU ◽  
Shuang WU ◽  
Weiling ZHANG ◽  
Yu DONG ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 6953
Author(s):  
Yixing Du ◽  
Zhijian Hu

Data-driven methods using synchrophasor measurements have a broad application prospect in Transient Stability Assessment (TSA). Most previous studies only focused on predicting whether the power system is stable or not after disturbance, which lacked a quantitative analysis of the risk of transient stability. Therefore, this paper proposes a two-stage power system TSA method based on snapshot ensemble long short-term memory (LSTM) network. This method can efficiently build an ensemble model through a single training process, and employ the disturbed trajectory measurements as the inputs, which can realize rapid end-to-end TSA. In the first stage, dynamic hierarchical assessment is carried out through the classifier, so as to screen out credible samples step by step. In the second stage, the regressor is used to predict the transient stability margin of the credible stable samples and the undetermined samples, and combined with the built risk function to realize the risk quantification of transient angle stability. Furthermore, by modifying the loss function of the model, it effectively overcomes sample imbalance and overlapping. The simulation results show that the proposed method can not only accurately predict binary information representing transient stability status of samples, but also reasonably reflect the transient safety risk level of power systems, providing reliable reference for the subsequent control.


2017 ◽  
Vol 2017 (13) ◽  
pp. 1847-1850 ◽  
Author(s):  
Bendong Tan ◽  
Jun Yang ◽  
Xueli Pan ◽  
Jun Li ◽  
Peiyuan Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document