Enhanced Face Recognition System Based on Deep CNN

Author(s):  
Bendjillali Ridha Ilyas ◽  
Beladgham Mohammed ◽  
Merit Khaled ◽  
Kamline Miloud
Author(s):  
Jayanthi Raghavan ◽  
Majid Ahmadi

In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%.


2021 ◽  
Author(s):  
Jayanthi Raghavan ◽  
Majid Ahmadi

In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%.


2020 ◽  
Vol 1601 ◽  
pp. 052011
Author(s):  
Yong Li ◽  
Zhe Wang ◽  
Yang Li ◽  
Xu Zhao ◽  
Hanwen Huang

Author(s):  
CHING-WEN CHEN ◽  
CHUNG-LIN HUANG

This paper presents a face recognition system which can identify the unknown identity effectively using the front-view facial features. In front-view facial feature extractions, we can capture the contours of eyes and mouth by the deformable template model because of their analytically describable shapes. However, the shapes of eyebrows, nostrils and face are difficult to model using a deformable template. We extract them by using the active contour model (snake). After the contours of all facial features have been captured, we calculate effective feature values from these extracted contours and construct databases for unknown identities classification. In the database generation phase, 12 models are photographed, and feature vectors are calculated for each portrait. In the identification phase if any one of these 12 persons has his picture taken again, the system can recognize his identity.


Sensors ◽  
2014 ◽  
Vol 14 (11) ◽  
pp. 21726-21749 ◽  
Author(s):  
Won Lee ◽  
Yeong Kim ◽  
Hyung Hong ◽  
Kang Park

Sign in / Sign up

Export Citation Format

Share Document