scholarly journals Preprocessing Techniques to Improve CNN based Face Recognition System

2021 ◽  
Author(s):  
Jayanthi Raghavan ◽  
Majid Ahmadi

In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%.

Author(s):  
Jayanthi Raghavan ◽  
Majid Ahmadi

In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%.


Author(s):  
T. Arul Raj, Et. al.

Advances in technology have made life simpler in today's society by supplying us with a variety of emerging demands lacking By assessing the progressive stability of biometric recognition accuracy for newborns, biometric recognition can be used to recognize missing newborns and prevent them from being switched in higher-level hospitals.. Recognizing and authenticating newborns is a major problem in many hospitals. The face recognition system does an outstanding job of identifying and authenticating the newborn. To answer these concerns, create a face recognition device for newborns. The proposed approach improves picture consistency on a newborn's face. Our objectives are to propose a genetic, convolutional neural network, and fuzzy logic-based automated framework for newborn face recognition. As a paradigm GCNMF is suggested for real-world newborn face recognition. Convolutional, pooling, and fully-connected layers, as well as a Neuro Fuzzy layer, form the Inherited Convolutional Neuro Multi-Fuzzy. The model employs hereditary, convolutional neural networks, and fuzzy logic to deal with ambiguity and imprecision in the input configuration representation. The efficacy and outcomes of the recommended method are then analyzed using newborn face datasets and the Genetic Convolutional Neuro Multi-Fuzzy (GCNMF) Approach.


Author(s):  
Edy Winarno ◽  
Agus Harjoko ◽  
Aniati Murni Arymurthy ◽  
Edi Winarko

<p>The main problem in face recognition system based on half-face pattern is how to anticipate poses and illuminance variations to improve recognition rate. To solve this problem, we can use two lenses on stereo vision camera in face recognition system. Stereo vision camera has left and right lenses that can be used to produce a 2D image of each lens. Stereo vision camera in face recognition has capability to produce two of 2D face images with a different angle. Both angle of the face image will produce a detailed image of the face and better lighting levels on each of the left and right lenses. In this study, we proposed a face recognition technique, using 2 lens on a stereo vision camera namely symmetrical half-join. Symmetrical half-join is a method of normalizing the image of the face detection on each of the left and right lenses in stereo vision camera, then cropping and merging at each image. Tests on face recognition rate based on the variety of poses and variations in illumination shows that the symmetrical half-join method is able to provide a high accuracy of face recognition and can anticipate variations in given pose and illumination variations. The proposed model is able to produce 86% -97% recognition rate on a variety of poses and variations in angles between 0 °- 22.5 °. The variation of illuminance measured using a lux meter can result in 90% -100% recognition rate for the category of at least dim lighting levels (above 10 lux).</p>


Author(s):  
Edy Winarno ◽  
Agus Harjoko ◽  
Aniati Murni Arymurthy ◽  
Edi Winarko

<p>The main problem in face recognition system based on half-face pattern is how to anticipate poses and illuminance variations to improve recognition rate. To solve this problem, we can use two lenses on stereo vision camera in face recognition system. Stereo vision camera has left and right lenses that can be used to produce a 2D image of each lens. Stereo vision camera in face recognition has capability to produce two of 2D face images with a different angle. Both angle of the face image will produce a detailed image of the face and better lighting levels on each of the left and right lenses. In this study, we proposed a face recognition technique, using 2 lens on a stereo vision camera namely symmetrical half-join. Symmetrical half-join is a method of normalizing the image of the face detection on each of the left and right lenses in stereo vision camera, then cropping and merging at each image. Tests on face recognition rate based on the variety of poses and variations in illumination shows that the symmetrical half-join method is able to provide a high accuracy of face recognition and can anticipate variations in given pose and illumination variations. The proposed model is able to produce 86% -97% recognition rate on a variety of poses and variations in angles between 0 °- 22.5 °. The variation of illuminance measured using a lux meter can result in 90% -100% recognition rate for the category of at least dim lighting levels (above 10 lux).</p>


2019 ◽  
Vol 8 (3) ◽  
pp. 1204-1208

In the recent era, the importance of surveillance-related applications is increasing rapidly. In such applications, Face Recognition is becoming an emerging, fast-growing research field in the security authentication systems. Face recognition becomes one of the biometric techniques for identifying individuals face in digital images or in the stored image. It has various applications in biometrics, military, video surveillance and so on. In an earlier age, face recognition techniques implemented using a traditional approach like holistic based, hybrid and feature-based. In the traditional system, there are a number of issues like light illumination, occlusion problem, different facial expressions, and poses of the particular individual. These factors are affecting the accuracy and efficiency of the face recognition system. Nowadays there is an advancement in the technology and methods which are used in the face recognition system. The new methods and techniques of face recognition are devised by deep learning methods. The research focuses on a proposed model developed by using some Deep Learning methods and frameworks for face recognition. This model plays an important role in the authentication of an individual in the online examination system in educational institutes. Multi-level authentication is used for authenticating individual and to have crosschecked over throughout the examination period. The Deep Learning methods and frameworks overcome the issues raised in face recognition by traditional methods. This proposed model used for the authentication of an individual in educational institutes where online examinations are conducted.


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Now a days one of the critical factors that affects the recognition performance of any face recognition system is partial occlusion. The paper addresses face recognition in the presence of sunglasses and scarf occlusion. The face recognition approach that we proposed, detects the face region that is not occluded and then uses this region to obtain the face recognition. To segment the occluded and non-occluded parts, adaptive Fuzzy C-Means Clustering is used and for recognition Minimum Cost Sub-Block Matching Distance(MCSBMD) are used. The input face image is divided in to number of sub blocks and each block is checked if occlusion present or not and only from non-occluded blocks MWLBP features are extracted and are used for classification. Experiment results shows our method is giving promising results when compared to the other conventional techniques.


Author(s):  
Dr.C K Gomathy ◽  
T. suneel ◽  
Y.Jeeevan Kumar Reddy

The Face recognition and image or video recognition are popular research topics in biometric technology. Real-time face recognition is an exciting field and a rapidly evolving issue. Key component analysis (PCA) may be a statistical technique collectively called correlational analysis . The goal of PCA is to scale back the massive amount of knowledge storage to the dimensions of the functional space required to render the face recognition system. The wide one-dimensional pixel vector generated from the two-dimensional image of the face and therefore the basic elements of the spatial function are designed for face recognition using PCA. this is often the projection of your own space. Sufficient space is decided by the brand. specialise in the eigenvectors of the covariance matrix of the fingerprint image collection. i'm building a camera-based real-time face recognition system and installing an algorithm. Use OpenCV, Haar Cascade, Eigen face, Fisher Face, LBPH and Python for program development.


2012 ◽  
Vol 241-244 ◽  
pp. 1705-1709
Author(s):  
Ching Tang Hsieh ◽  
Chia Shing Hu

In this paper, a robust and efficient face recognition system based on luminance distribution by using maximum likelihood estimation is proposed. The distribution of luminance components of the face region is acquired and applied to maximum likelihood test for face matching. The experimental results showed that the proposed method has a high recognition rate and requires less computation time.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 269-281 ◽  
Author(s):  
Hima Bindu ◽  
Manjunathachari K.

Purpose This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial recognition (FR) systems play a vital part in several applications such as surveillance, access control and image understanding. Accordingly, various face recognition methods have been developed in the literature, but the applicability of these algorithms is restricted because of unsatisfied accuracy. So, the improvement of face recognition is significantly important for the current trend. Design/methodology/approach This paper proposes a face recognition system through feature extraction and classification. The proposed model extracts the local and the global feature of the image. The local features of the image are extracted using the kernel based scale invariant feature transform (K-SIFT) model and the global features are extracted using the proposed m-Co-HOG model. (Co-HOG: co-occurrence histograms of oriented gradients) The proposed m-Co-HOG model has the properties of the Co-HOG algorithm. The feature vector database contains combined local and the global feature vectors derived using the K-SIFT model and the proposed m-Co-HOG algorithm. This paper proposes a probabilistic neuro-fuzzy classifier system for the finding the identity of the person from the extracted feature vector database. Findings The face images required for the simulation of the proposed work are taken from the CVL database. The simulation considers a total of 114 persons form the CVL database. From the results, it is evident that the proposed model has outperformed the existing models with an improved accuracy of 0.98. The false acceptance rate (FAR) and false rejection rate (FRR) values of the proposed model have a low value of 0.01. Originality/value This paper proposes a face recognition system with proposed m-Co-HOG vector and the hybrid neuro-fuzzy classifier. Feature extraction was based on the proposed m-Co-HOG vector for extracting the global features and the existing K-SIFT model for extracting the local features from the face images. The proposed m-Co-HOG vector utilizes the existing Co-HOG model for feature extraction, along with a new color gradient decomposition method. The major advantage of the proposed m-Co-HOG vector is that it utilizes the color features of the image along with other features during the histogram operation.


Sign in / Sign up

Export Citation Format

Share Document