A real-time bridge structural health monitoring device using cost-effective one-axis accelerometers

Author(s):  
Chih-Hsing Lin ◽  
Ssu-Ying Chen ◽  
Chih-Ting Kuo ◽  
Gang-Neng Sung ◽  
Chih-Chyau Yang ◽  
...  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arka Ghosh ◽  
David John Edwards ◽  
M. Reza Hosseini ◽  
Riyadh Al-Ameri ◽  
Jemal Abawajy ◽  
...  

PurposeThis research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective non-destructive technologies. In so doing, the work illustrates how a coalescence of low-cost digital technologies can seamlessly integrate to solve practical construction problems.Design/methodology/approachA mixed philosophies epistemological design is adopted to implement the empirical quantitative analysis of “real-time” data collected via sensor-based technologies streamed through a Raspberry Pi and uploaded onto a cloud-based system. Data was analysed using a hybrid approach that combined both vibration-characteristic-based method and linear variable differential transducers (LVDT).FindingsThe research utilises a novel digital research approach for accurately detecting and recording the localisation of structural cracks in concrete beams. This non-destructive low-cost approach was shown to perform with a high degree of accuracy and precision, as verified by the LVDT measurements. This research is testament to the fact that as technological advancements progress at an exponential rate, the cost of implementation continues to reduce to produce higher-accuracy “mass-market” solutions for industry practitioners.Originality/valueAccurate structural health monitoring of concrete structures necessitates expensive equipment, complex signal processing and skilled operator. The concrete industry is in dire need of a simple but reliable technique that can reduce the testing time, cost and complexity of maintenance of structures. This was the first experiment of its kind that seeks to develop an unconventional approach to solve the maintenance problem associated with concrete structures. This study merges industry 4.0 digital technologies with a novel low-cost and automated hybrid analysis for real-time structural health monitoring of concrete beams by fusing several multidisciplinary approaches into one integral technological configuration.


2014 ◽  
Vol 87 ◽  
pp. 1266-1269 ◽  
Author(s):  
L. Capineri ◽  
A. Bulletti ◽  
M. Calzolai ◽  
P. Giannelli ◽  
D. Francesconi

2021 ◽  
Author(s):  
Igor Razuvaev

Abstract Isothermal Storage Tanks (IST) contains tens thousands tons of the liquefied gases (propane, ethane, ethylene, etc.) at very low temperatures. These are the most dangerous industrial objects. In the report the Integrated Structural Health Monitoring (ISHM) Systems for the management of the integrity of these tanks in real time is considered. The structure of the ISHM Systems, NDT methods, technical characteristics, data verification procedures, a decision-making algorithm and practical results are described.


2000 ◽  
Author(s):  
Jeffrey S. Vipperman ◽  
Deyu Li

Abstract This paper closely examines the nature of the dielectric response of piezoceramics that are used as Adaptive Piezoelectric Sensoriactuators (APSAs). Firstly, it is demonstrated that he APSA possesses real time structural health monitoring abilities, based on the capacitance measurement of the piezoceramic. Secondly, nonideal behavior including lossy, hysteretic, and field dependence is measured in the piezoceramics and a method mitigating some of this response in the Adaptive Piezoelectric Sensoriactuator is proposed.


2020 ◽  
Vol 113 (3) ◽  
pp. 1641-1649
Author(s):  
Bhawani Shankar Chowdhry ◽  
Ali Akbar Shah ◽  
Muhammad Aslam Uqaili ◽  
Tayab Memon

2019 ◽  
Vol 19 (04) ◽  
pp. 1971002 ◽  
Author(s):  
X. X. Cheng ◽  
Y. J. Ge

In this paper, we propose an innovative structural health monitoring (SHM) system for large transmission towers that are frequently subjected to strong winds. The system is based on the strategy of using a static force equilibrium equation to calculate the whole structure’s real-time stress distribution according to its real-time behavior, as captured by the global positioning system (GPS). The reason for adopting this approach is that large transmission towers are fundamentally quasi-static structures and they are not prone to resonance under wind excitations. A case study is used to present the SHM system, then its effectiveness is validated by comparing the simulated SHM results with the exact solution obtained by a realistic time-history dynamic analysis. Additionally, we discuss the use of a new reliability analysis method based on the Ditlevsen’s bounds to assess the real-time structural conditions.


Sign in / Sign up

Export Citation Format

Share Document