Improved codebook constrained Wiener filter speech enhancement

Author(s):  
Sarang Chehresa ◽  
Mohammad H. Savoji
2021 ◽  
Vol 11 (6) ◽  
pp. 2816
Author(s):  
Hansol Kim ◽  
Jong Won Shin

The transfer function-generalized sidelobe canceller (TF-GSC) is one of the most popular structures for the adaptive beamformer used in multi-channel speech enhancement. Although the TF-GSC has shown decent performance, a certain amount of steering error is inevitable, which causes leakage of speech components through the blocking matrix (BM) and distortion in the fixed beamformer (FBF) output. In this paper, we propose to suppress the leaked signal in the output of the BM and restore the desired signal in the FBF output of the TF-GSC. To reduce the risk of attenuating speech in the adaptive noise canceller (ANC), the speech component in the output of the BM is suppressed by applying a gain function similar to the square-root Wiener filter, assuming that a certain portion of the desired speech should be leaked into the BM output. Additionally, we propose to restore the attenuated desired signal in the FBF output by adding some of the microphone signal components back, depending on how microphone signals are related to the FBF and BM outputs. The experimental results showed that the proposed TF-GSC outperformed conventional TF-GSC in terms of the perceptual evaluation of speech quality (PESQ) scores under various noise conditions and the direction of arrivals for the desired and interfering sources.


2021 ◽  
pp. 2150022
Author(s):  
Caio Cesar Enside de Abreu ◽  
Marco Aparecido Queiroz Duarte ◽  
Bruno Rodrigues de Oliveira ◽  
Jozue Vieira Filho ◽  
Francisco Villarreal

Speech processing systems are very important in different applications involving speech and voice quality such as automatic speech recognition, forensic phonetics and speech enhancement, among others. In most of them, the acoustic environmental noise is added to the original signal, decreasing the signal-to-noise ratio (SNR) and the speech quality by consequence. Therefore, estimating noise is one of the most important steps in speech processing whether to reduce it before processing or to design robust algorithms. In this paper, a new approach to estimate noise from speech signals is presented and its effectiveness is tested in the speech enhancement context. For this purpose, partial least squares (PLS) regression is used to model the acoustic environment (AE) and a Wiener filter based on a priori SNR estimation is implemented to evaluate the proposed approach. Six noise types are used to create seven acoustically modeled noises. The basic idea is to consider the AE model to identify the noise type and estimate its power to be used in a speech processing system. Speech signals processed using the proposed method and classical noise estimators are evaluated through objective measures. Results show that the proposed method produces better speech quality than state-of-the-art noise estimators, enabling it to be used in real-time applications in the field of robotic, telecommunications and acoustic analysis.


2013 ◽  
Vol 17 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Marwa A. Abd El-Fattah ◽  
Moawad I. Dessouky ◽  
Alaa M. Abbas ◽  
Salaheldin M. Diab ◽  
El-Sayed M. El-Rabaie ◽  
...  

2011 ◽  
Vol 53 (5) ◽  
pp. 677-689 ◽  
Author(s):  
Junfeng Li ◽  
Shuichi Sakamoto ◽  
Satoshi Hongo ◽  
Masato Akagi ◽  
Yôiti Suzuki

2018 ◽  
Vol 7 (4.11) ◽  
pp. 271
Author(s):  
Ali Abd Almisreb ◽  
Nooritawati Md Tahir ◽  
Ahmad Farid Abidin ◽  
Norashidah Md Din

In this paper, a speech enhancement method using 2D Gabor filter is proposed. The proposed filter is used to enhance Arabic phoneme speech signals that have been recorded under control environment namely indoor room recording. All the phoneme signals are spoken by Malay speakers and considered as non-native Arabic speakers. Firstly, corrupted speech signals by noise must be enhanced before further processing. The effectiveness of the suggested approach is evaluated in compare with Wiener filter. It is proven that the proposed 2D Gabor filters performed appropriately for speech enhancement purpose at different wavelengths.  


Sign in / Sign up

Export Citation Format

Share Document