Positive periodic solution for a delay diffusive predator-prey system with Holling type III functional response and harvest impulse

Author(s):  
Zhengwen Tu ◽  
Zhongwei Zha ◽  
Ting Zhang ◽  
Jigui Jian
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Nattawut Khansai ◽  
Akapak Charoenloedmongkhon

AbstractIn the present article, we propose and analyze a new mathematical model for a predator–prey system including the following terms: a Monod–Haldane functional response (a generalized Holling type IV), a term describing the anti-predator behavior of prey populations and one for an impulsive control strategy. In particular, we establish the existence condition under which the system has a locally asymptotically stable prey-eradication periodic solution. Violating such a condition, the system turns out to be permanent. Employing bifurcation theory, some conditions, under which the existence and stability of a positive periodic solution of the system occur but its prey-eradication periodic solution becomes unstable, are provided. Furthermore, numerical simulations for the proposed model are given to confirm the obtained theoretical results.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Weibing Wang ◽  
Jianhua Shen ◽  
Juan J. Nieto

We considered a nonautonomous two dimensional predator-prey system with impulsive effect. Conditions for the permanence of the system and for the existence of a unique stable periodic solution are obtained.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhixiang Ju ◽  
Yuanfu Shao ◽  
Xiaolan Xie ◽  
Xiangmin Ma ◽  
Xianjia Fang

Based on the biological resource management of natural resources, a stage-structured predator-prey model with Holling type III functional response, birth pulse, and impulsive harvesting at different moments is proposed in this paper. By applying comparison theorem and some analysis techniques, the global attractivity of predator-extinction periodic solution and the permanence of this system are studied. At last, examples and numerical simulations are given to verify the validity of the main results.


Author(s):  
Meng Fan ◽  
Qian Wang ◽  
Xingfu Zou

We investigate a non-autonomous ratio-dependent predator–prey system, whose autonomous versions have been analysed by several authors. For the general non-autonomous case, we address such properties as positive invariance, permanence, non-persistence and the globally asymptotic stability for the system. For the periodic and almost-periodic cases, we obtain conditions for existence, uniqueness and stability of a positive periodic solution, and a positive almost-periodic solution, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Jiangbin Chen ◽  
Shengbin Yu

A new set of sufficient conditions for the permanence of a ratio-dependent predator-prey system with Holling type III functional response and feedback controls are obtained. The result shows that feedback control variables have no influence on the persistent property of the system, thus improving and supplementing the main result of Yang (2008).


2005 ◽  
Vol 2005 (2) ◽  
pp. 153-169 ◽  
Author(s):  
Fengde Chen

With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of a delayed ratio-dependent predator-prey system with stage structure for predator. The approach involves some new technique of priori estimate. For the system without delay, by constructing a suitable Lyapunov function, some sufficient conditions which guarantee the existence of a unique global attractive positive periodic solution are obtained. Those results have further applications in population dynamics.


2008 ◽  
Vol 01 (03) ◽  
pp. 339-354 ◽  
Author(s):  
XIAOQUAN DING ◽  
YUANYUAN WANG

A two-species Gause-type ratio-dependent predator-prey system with time delay in a two-patch environment is investigated. By using a continuation theorem based on coincidence degree theory, we establish easily verifiable criteria for the existence of periodic solution for the system. As corollaries, some applications are listed. In particular, our results extend and improve some known results.


Sign in / Sign up

Export Citation Format

Share Document