Oxidation kinetic mechanism study on the adsorption of O on Al(110)surface

Author(s):  
ZhengxinYan ◽  
Qian chen ◽  
Dongzhi Yan ◽  
An Gong ◽  
Qian Liao
Fuel ◽  
2020 ◽  
pp. 119767
Author(s):  
Dong-Xu Tian ◽  
Yue-Xi Liu ◽  
Bing-Yin Wang ◽  
Zhen-Yu Tian

1997 ◽  
Vol 164 (1-2) ◽  
pp. 237-249 ◽  
Author(s):  
T.A. Nijhuis ◽  
M. Makkee ◽  
A.D. van Langeveld ◽  
J.A. Moulijn

2016 ◽  
Vol 8 (2) ◽  
pp. 394-404
Author(s):  
Washington B. da Silva ◽  
Alessandra F. Albernaz

Author(s):  
Hua Xiao ◽  
Agustin Valera-Medina

To explore the potential of ammonia-based fuel as an alternative fuel for future power generation, studies involving robust mathematical, chemical, thermofluidic analyses are required to progress toward industrial implementation. Thus, the aim of this study is to identify reaction mechanisms that accurately represent ammonia kinetics over a large range of conditions, particularly at industrial conditions. To comprehensively evaluate the performance of the chemical mechanisms, 12 mechanisms are tested in terms of flame speed, NOx emissions and ignition delay against the experimental data. Freely propagating flame calculations indicate that Mathieu mechanism yields the best agreement within experimental data range of different ammonia concentrations, equivalence ratios, and pressures. Ignition delay times calculations show that Mathieu mechanism and Tian mechanism yield the best agreement with data from shock tube experiments at pressures up to 30 atm. Sensitivity analyses were performed in order to identify reactions and ranges of conditions that require optimization in future mechanism development. The present study suggests that the Mathieu mechanism and Tian mechanism are the best suited for the further study on ammonia/hydrogen combustion chemistry under practical industrial conditions. The results obtained in this study also allow gas turbine designers and modelers to choose the most suitable mechanism for combustion studies.


Sign in / Sign up

Export Citation Format

Share Document