Capacity results on the multiple-access wiretap channel with noiseless feedback

Author(s):  
Bin Dai
2017 ◽  
Vol 11 (14) ◽  
pp. 2190-2198 ◽  
Author(s):  
Bin Dai ◽  
Zheng Ma

IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 7244-7253 ◽  
Author(s):  
Kaiwei Jiang ◽  
Tao Jing ◽  
Fan Zhang ◽  
Yan Huo ◽  
Zhen Li

Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 945
Author(s):  
Karim Banawan ◽  
Sennur Ulukus

We investigate the secure degrees of freedom (s.d.o.f.) of three new channel models: broadcast channel with combating helpers, interference channel with selfish users, and multiple access wiretap channel with deviating users. The goal of introducing these channel models is to investigate various malicious interactions that arise in networks, including active adversaries. That is in contrast with the common assumption in the literature that the users follow a certain protocol altruistically and transmit both message-carrying and cooperative jamming signals in an optimum manner. In the first model, over a classical broadcast channel with confidential messages (BCCM), there are two helpers, each associated with one of the receivers. In the second model, over a classical interference channel with confidential messages (ICCM), there is a helper and users are selfish. By casting each problem as an extensive-form game and applying recursive real interference alignment, we show that, for the first model, the combating intentions of the helpers are neutralized and the full s.d.o.f. is retained; for the second model, selfishness precludes secure communication and no s.d.o.f. is achieved. In the third model, we consider the multiple access wiretap channel (MAC-WTC), where multiple legitimate users wish to have secure communication with a legitimate receiver in the presence of an eavesdropper. We consider the case when a subset of users deviate from the optimum protocol that attains the exact s.d.o.f. of this channel. We consider two kinds of deviation: when some of the users stop transmitting cooperative jamming signals, and when a user starts sending intentional jamming signals. For the first scenario, we investigate possible responses of the remaining users to counteract such deviation. For the second scenario, we use an extensive-form game formulation for the interactions of the deviating and well-behaving users. We prove that a deviating user can drive the s.d.o.f. to zero; however, the remaining users can exploit its intentional jamming signals as cooperative jamming signals against the eavesdropper and achieve an optimum s.d.o.f.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Xinxing Yin ◽  
Xiao Chen ◽  
Zhi Xue

We introduce the wiretap channel with action-dependent states and rate-limited feedback. In the new model, the state sequence is dependent on the action sequence which is selected according to the message, and a secure rate-limited feedback link is shared between the transmitter and the receiver. We obtain the capacity-equivocation region and secrecy capacity of such a channel both for the case where the channel inputs depend noncausally on the state sequence and the case where they are restricted to causal dependence. We construct the capacity-achieving coding schemes utilizing Wyner's random binning, Gel'fand and Pinsker’s coding technique, and rate splitting. Furthermore, we compare our results with the existing approaches without feedback, with noiseless feedback, and without action-dependent states. The simulation results show that the secrecy capacity of our model is bigger than that of the first two existed approaches. Besides, it is also shown that, by taking actions to affect the channel states, we guarantee the data integrity of the message transmitted in the two-stage communication systems although the tolerable overhead of transmission time is brought.


Sign in / Sign up

Export Citation Format

Share Document