scholarly journals Wiretap Channel with Action-Dependent States and Rate-Limited Feedback

2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Xinxing Yin ◽  
Xiao Chen ◽  
Zhi Xue

We introduce the wiretap channel with action-dependent states and rate-limited feedback. In the new model, the state sequence is dependent on the action sequence which is selected according to the message, and a secure rate-limited feedback link is shared between the transmitter and the receiver. We obtain the capacity-equivocation region and secrecy capacity of such a channel both for the case where the channel inputs depend noncausally on the state sequence and the case where they are restricted to causal dependence. We construct the capacity-achieving coding schemes utilizing Wyner's random binning, Gel'fand and Pinsker’s coding technique, and rate splitting. Furthermore, we compare our results with the existing approaches without feedback, with noiseless feedback, and without action-dependent states. The simulation results show that the secrecy capacity of our model is bigger than that of the first two existed approaches. Besides, it is also shown that, by taking actions to affect the channel states, we guarantee the data integrity of the message transmitted in the two-stage communication systems although the tolerable overhead of transmission time is brought.

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Bin Dai ◽  
A. J. Han Vinck ◽  
Yuan Luo

We investigate the wiretap channel in the presence of action-dependent states and noiseless feedback. Given the message to be communicated, the transmitter chooses an action sequence that affects the formation of the channel states and then generates the channel input sequence based on the state sequence, the message, and the noiseless feedback, where the noiseless feedback is from the output of the main channel to the channel encoder. The main channel and the wiretap channel are two discrete memoryless channels (DMCs), and they are connected with the legitimate receiver and the wiretapper, respectively. The transition probability distribution of the main channel depends on the channel state. Measuring wiretapper’s uncertainty about the message by equivocation, the capacity equivocation regions are provided both for the case where the channel inputs are allowed to depend noncausally on the state sequence and the case where they are restricted to causal dependence. Furthermore, the secrecy capacities for both cases are formulated, which provide the best transmission rate with perfect secrecy. The result is further explained via a binary example.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Xinxing Yin ◽  
Zhi Xue ◽  
Bin Dai

The discrete memoryless broadcast channels (DMBCs) with noiseless feedback are studied. The entire capacity-equivocation regions of two models of the DMBCs with noiseless feedback are obtained. One is the degraded DMBCs with rate-limited feedback; the other is thelessandreversely less noisyDMBCs with causal feedback. In both models, two kinds of messages are transmitted. The common message is to be decoded by both the legitimate receiver and the eavesdropper, while the confidential message is only for the legitimate receiver. Our results generalize the secrecy capacity of the degraded wiretap channel with rate-limited feedback (Ardestanizadeh et al., 2009) and the restricted wiretap channel with noiseless feedback (Dai et al., 2012). Furthermore, we use a simpler and more intuitive deduction to get the single-letter characterization of the capacity-equivocation region, instead of relying on the recursive argument which is complex and not intuitive.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 278 ◽  
Author(s):  
Haonan Zhang ◽  
Linman Yu ◽  
Bin Dai

In this paper, we propose two feedback coding schemes for the action-dependent wiretap channel with noncausal state at the transmitter. The first scheme follows from the already existing secret key based feedback coding scheme for the wiretap channel. The second one follows from our recently proposed hybrid feedback scheme for the wiretap channel. We show that, for the action-dependent wiretap channel with noncausal state at the transmitter, the second feedback scheme performs better than the first one, and the capacity results of this paper are further explained via a Gaussian example, which we call the action-dependent dirty paper wiretap channel with noiseless feedback.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 929
Author(s):  
Guangfen Xie ◽  
Bin Dai

The Gaussian wiretap channel with noncausal state interference available at the transmitter, which is also called the dirty paper wiretap channel (DP-WTC), has been extensively studied in the literature. Recently, it has been shown that taking actions on the corrupted state interference of the DP-WTC (also called the action-dependent DP-WTC) helps to increase the secrecy capacity of the DP-WTC. Subsequently, it has been shown that channel feedback further increases the secrecy capacity of the action-dependent DP-WTC (AD-DP-WTC), and a sub-optimal feedback scheme is proposed for this feedback model. In this paper, a two-step hybrid scheme and a corresponding new lower bound on the secrecy capacity of the AD-DP-WTC with noiseless feedback are proposed. The proposed new lower bound is shown to be optimal (achieving the secrecy capacity) and tighter than the existing one in the literature for some cases, and the results of this paper are further explained via numerical examples.


2021 ◽  
Author(s):  
◽  
Ramoni Ojekunle Adeogun

<p>Temporal variation and frequency selectivity of wireless channels constitute a major drawback to the attainment of high gains in capacity and reliability offered by multiple antennas at the transmitter and receiver of a mobile communication system. Limited feedback and adaptive transmission schemes such as adaptive modulation and coding, antenna selection, power allocation and scheduling have the potential to provide the platform of attaining the high transmission rate, capacity and QoS requirements in current and future wireless communication systems. Theses schemes require both the transmitter and receiver to have accurate knowledge of Channel State Information (CSI). In Time Division Duplex (TDD) systems, CSI at the transmitter can be obtained using channel reciprocity. In Frequency Division Duplex (FDD) systems, however, CSI is typically estimated at the receiver and fed back to the transmitter via a low-rate feedback link. Due to the inherent time delays in estimation, processing and feedback, the CSI obtained from the receiver may become outdated before its actual usage at the transmitter. This results in significant performance loss, especially in high mobility environments. There is therefore a need to extrapolate the varying channel into the future, far enough to account for the delay and mitigate the performance degradation. The research in this thesis investigates parametric modeling and prediction of mobile MIMO channels for both narrowband and wideband systems. The focus is on schemes that utilize the additional spatial information offered by multiple sampling of the wave-field in multi-antenna systems to aid channel prediction. The research has led to the development of several algorithms which can be used for long range extrapolation of time-varyingchannels. Based on spatial channel modeling approaches, simple and efficient methods for the extrapolation of narrowband MIMO channels are proposed. Various extensions were also developed. These include methods for wideband channels, transmission using polarized antenna arrays, and mobile-to-mobile systems. Performance bounds on the estimation and prediction error are vital when evaluating channel estimation and prediction schemes. For this purpose, analytical expressions for bound on the estimation and prediction of polarized and non-polarized MIMO channels are derived. Using the vector formulation of the Cramer Rao bound for function of parameters, readily interpretable closed-form expressions for the prediction error bounds were found for cases with Uniform Linear Array (ULA) and Uniform Planar Array (UPA). The derived performance bounds are very simple and so provide insight into system design. The performance of the proposed algorithms was evaluated using standardized channel models. The effects of the temporal variation of multipath parameters on prediction is studied and methods for jointly tracking the channel parameters are developed. The algorithms presented can be utilized to enhance the performance of limited feedback and adaptive MIMO transmission schemes.</p>


2018 ◽  
Vol 73 (5-6) ◽  
pp. 381-390 ◽  
Author(s):  
Berna Özbek ◽  
Özgecan Özdoğan Şenol ◽  
Güneş Karabulut Kurt

Sign in / Sign up

Export Citation Format

Share Document