Deep Neural Network Security Collaborative Filtering Scheme for Service Recommendation in Intelligent Cyber-Physical Systems

Author(s):  
Wei Liang ◽  
Songyou Xie ◽  
Jiahong Cai ◽  
Jianbo Xu ◽  
Yupeng Hu ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Quentin Cabanes ◽  
Benaoumeur Senouci ◽  
Amar Ramdane-Cherif

Cyber-Physical Systems (CPSs) are a mature research technology topic that deals with Artificial Intelligence (AI) and Embedded Systems (ES). They interact with the physical world via sensors/actuators to solve problems in several applications (robotics, transportation, health, etc.). These CPSs deal with data analysis, which need powerful algorithms combined with robust hardware architectures. On one hand, Deep Learning (DL) is proposed as the main solution algorithm. On the other hand, the standard design and prototyping methodologies for ES are not adapted to modern DL-based CPS. In this paper, we investigate AI design for CPS around embedded DL. The main contribution of this work is threefold: (1) We define an embedded DL methodology based on a Multi-CPU/FPGA platform. (2) We propose a new hardware design architecture of a Neural Network Processor (NNP) for DL algorithms. The computation time of a feed forward sequence is estimated to 23 ns for each parameter. (3) We validate the proposed methodology and the DL-based NNP using a smart LIDAR application use-case. The input of our NNP is a voxel grid hardware computed from 3D point cloud. Finally, the results show that our NNP is able to process Dense Neural Network (DNN) architecture without bias.


Author(s):  
Tong Zhou ◽  
Yuheng Zhang ◽  
Shijin Duan ◽  
Yukui Luo ◽  
Xiaolin Xu

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Farzaneh Moradkhani ◽  
Martin Fränzle

Abstract Functional architectures of cyber-physical systems increasingly comprise components that are generated by training and machine learning rather than by more traditional engineering approaches, as necessary in safety-critical application domains, poses various unsolved challenges. Commonly used computational structures underlying machine learning, like deep neural networks, still lack scalable automatic verification support. Due to size, non-linearity, and non-convexity, neural network verification is a challenge to state-of-art Mixed Integer linear programming (MILP) solvers and satisfiability modulo theories (SMT) solvers [2], [3]. In this research, we focus on artificial neural network with activation functions beyond the Rectified Linear Unit (ReLU). We are thus leaving the area of piecewise linear function supported by the majority of SMT solvers and specialized solvers for Artificial Neural Networks (ANNs), the successful like Reluplex solver [1]. A major part of this research is using the SMT solver iSAT [4] which aims at solving complex Boolean combinations of linear and non-linear constraint formulas (including transcendental functions), and therefore is suitable to verify the safety properties of a specific kind of neural network known as Multi-Layer Perceptron (MLP) which contain non-linear activation functions.


Sign in / Sign up

Export Citation Format

Share Document