voxel grid
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 26)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Aditya Balu ◽  
Sambit Ghadai ◽  
Onur Rauf Bingol ◽  
Adarsh Krishnamurthy

Abstract Distance field representation of objects in 3D space has several applications such as shape manipulation, graphics rendering, path planning, etc. Distance transforms (DTs) are discrete representations of distance fields in a regular voxel grid. The two main limitations of using distance transforms are that they are compute-intensive, and there are errors introduced while representing the object using DTs. In this work, we develop an hybrid GPU-accelerated marching wavefront method for computing DTs of models composed of trimmed NURBS surfaces with theoretical bounds. Our hybrid marching approach eliminates the error due to calculating approximate distances by marching. We also calculate the bounds on the error introduced due to the tessellation of the trimmed NURBS surfaces and calculate the propagation of these bounds in computing the DT. Finally, we present computation times for both 2D and 3D GPU DTs of test objects. We show that our GPU-accelerated approach is significantly faster than existing CPU-based methods.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4448
Author(s):  
Jianjian Yang ◽  
Chao Wang ◽  
Wenjie Luo ◽  
Yuchen Zhang ◽  
Boshen Chang ◽  
...  

In order to meet the needs of intelligent perception of the driving environment, a point cloud registering method based on 3D NDT-ICP algorithm is proposed to improve the modeling accuracy of tunneling roadway environments. Firstly, Voxel Grid filtering method is used to preprocess the point cloud of tunneling roadways to maintain the overall structure of the point cloud and reduce the number of point clouds. After that, the 3D NDT algorithm is used to solve the coordinate transformation of the point cloud in the tunneling roadway and the cell resolution of the algorithm is optimized according to the environmental features of the tunneling roadway. Finally, a kd-tree is introduced into the ICP algorithm for point pair search, and the Gauss–Newton method is used to optimize the solution of nonlinear objective function of the algorithm to complete accurate registering of tunneling roadway point clouds. The experimental results show that the 3D NDT algorithm can meet the resolution requirement when the cell resolution is set to 0.5 m under the condition of processing the point cloud with the environmental features of tunneling roadways. At this time, the registering time is the shortest. Compared with the NDT algorithm, ICP algorithm and traditional 3D NDT-ICP algorithm, the registering speed of the 3D NDT-ICP algorithm proposed in this paper is obviously improved and the registering error is smaller.


2021 ◽  
Vol 13 (10) ◽  
pp. 1905
Author(s):  
Biao Xiong ◽  
Weize Jiang ◽  
Dengke Li ◽  
Man Qi

Terrestrial laser scanning (TLS) is an important part of urban reconstruction and terrain surveying. In TLS applications, 4-point congruent set (4PCS) technology is widely used for the global registration of point clouds. However, TLS point clouds usually enjoy enormous data and uneven density. Obtaining the congruent set of tuples in a large point cloud scene can be challenging. To address this concern, we propose a registration method based on the voxel grid of the point cloud in this paper. First, we establish a voxel grid structure and index structure for the point cloud and eliminate uneven point cloud density. Then, based on the point cloud distribution in the voxel grid, keypoints are calculated to represent the entire point cloud. Fast query of voxel grids is used to restrict the selection of calculation points and filter out 4-point tuples on the same surface to reduce ambiguity in building registration. Finally, the voxel grid is used in our proposed approach to perform random queries of the array. Using different indoor and outdoor data to compare our proposed approach with other 4-point congruent set methods, according to the experimental results, in terms of registration efficiency, the proposed method is more than 50% higher than K4PCS and 78% higher than Super4PCS.


2021 ◽  
Author(s):  
Dmitri Shastin ◽  
Sila Genc ◽  
Greg D. Parker ◽  
Kristin Koller ◽  
Chantal M.W. Tax ◽  
...  

Through advancing the existing and introducing novel methodological developments in streamlines tractography, this work proposes an approach that is meant to specifically interrogate an important yet relatively understudied population of the human white matter - the short association fibres. By marrying tractography with surface representation of the cortex, the framework: (1) ensures a greater cortical surface coverage through spreading streamline seeds more uniformly; (2) relies on precise filtering mechanics which are particularly important when dealing with small, morphologically complex structures; (3) allows to make use of surface-based registration for dataset comparisons which can be superior in the vicinity of the cortex. The indexation of surface vertices at each streamline end enables direct interfacing between streamlines and the cortical surface without dependence on the voxel grid. Short association fibre tractograms generated using recent test-retest data from our institution are carefully characterised and measures of consistency using streamline-, voxel-, surface- and network-wise comparisons calculated.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 847
Author(s):  
Sjoerd Rijnsdorp ◽  
Mark J. Roef ◽  
Albert J. Arends

Functional imaging with 68Ga prostate-specific membrane antigen (PSMA) and positron emission tomography (PET) can fulfill an important role in treatment selection and adjustment in prostate cancer. This article focusses on quantitative assessment of 68Ga-PSMA-PET. The effect of various parameters on standardized uptake values (SUVs) is explored, and an optimal Bayesian penalized likelihood (BPL) reconstruction is suggested. PET acquisitions of two phantoms consisting of a background compartment and spheres with diameter 4 mm to 37 mm, both filled with solutions of 68Ga in water, were performed with a GE Discovery 710 PET/CT scanner. Recovery coefficients (RCs) in multiple reconstructions with varying noise penalty factors and acquisition times were determined and analyzed. Apparent recovery coefficients of spheres with a diameter smaller than 17 mm were significantly lower than those of spheres with a diameter of 17 mm and bigger (p < 0.001) for a tumor-to-background (T/B) ratio of 10:1 and a scan time of 10 min per bed position. With a T/B ratio of 10:1, the four largest spheres exhibit significantly higher RCs than those with a T/B ratio of 20:1 (p < 0.0001). For spheres with a diameter of 8 mm and less, alignment with the voxel grid potentially affects the RC. Evaluation of PET/CT scans using (semi-)quantitative measures such as SUVs should be performed with great caution, as SUVs are influenced by scanning and reconstruction parameters. Based on the evaluation of multiple reconstructions with different β of phantom scans, an intermediate β (600) is suggested as the optimal value for the reconstruction of clinical 68Ga-PSMA PET/CT scans, considering that both detectability and reproducibility are relevant.


2021 ◽  
Author(s):  
Stéphane André ◽  
Julien Boisse ◽  
Camille Noûs

International audience FFT-based solvers are increasingly used by many researcher groups interested in modelling the mechanical behavior associated to a heterogeneous microstructure. A development is reported here that concerns the viscoelastic behavior of composite structures generally studied experimentally through Dynamic Mechanical Analysis (DMA). A parallelized computation code developed under complex-valued quantities provides virtual DMA experiments directly in the frequency domain on a heterogenous system described by a voxel grid of mechanical properties. The achieved precision and computation times are very good. An effort has been made to show the application of such virtual DMA tool starting from two examples found in the literature: the modelling of glassy/amorphous systems at a small scale and the modelling of experimental data obtained in temperature sweeping mode by DMA on a particulate composite made of glass beads and a polystyrene matrix, at a larger scale. Both examples show how virtual DMA can contribute to question, analyze, understand relaxation phenomena either on the theoretical or experimental point of view.


2021 ◽  
Vol 11 (8) ◽  
pp. 3426
Author(s):  
Guangxuan Xu ◽  
Yajun Pang ◽  
Zhenxu Bai ◽  
Yulei Wang ◽  
Zhiwei Lu

Point clouds registration is an important step for laser scanner data processing, and there have been numerous methods. However, the existing methods often suffer from low accuracy and low speed when registering large point clouds. To meet this challenge, an improved iterative closest point (ICP) algorithm combining random sample consensus (RANSAC) algorithm, intrinsic shape signatures (ISS), and 3D shape context (3DSC) is proposed. The proposed method firstly uses voxel grid filter for down-sampling. Next, the feature points are extracted by the ISS algorithm and described by the 3DSC. Afterwards, the ISS-3DSC features are used for rough registration with the RANSAC algorithm. Finally, the ICP algorithm is used for accurate registration. The experimental results show that the proposed algorithm has faster registration speed than the compared algorithms, while maintaining high registration accuracy.


2021 ◽  
Vol 13 (5) ◽  
pp. 931
Author(s):  
Karine R. M. Adeline ◽  
Xavier Briottet ◽  
Sidonie Lefebvre ◽  
Nicolas Rivière ◽  
Jean-Philippe Gastellu-Etchegorry ◽  
...  

With the advancement of high spatial resolution imaging spectroscopy, an accurate surface reflectance retrieval is needed to derive relevant physical variables for land cover mapping, soil, and vegetation monitoring. One challenge is to deal with tree shadows using atmospheric correction models if the tree crown transmittance Tc is not properly taken into account. This requires knowledge of the complex radiation mechanisms that occur in tree crowns, which can be provided by coupling the physical modeling of canopy radiative transfer codes (here DART) and the 3D representations of trees. First in this study, a sensitivity analysis carried out on DART simulations with an empirical 3D tree model led to a statistical regression predicting Tc from the tree leaf area index (LAI) and the solar zenith angle with good performances (RMSE ≤ 4.3% and R2 ≥ 0.91 for LAI ≤ 4 m2.m−2). Secondly, more realistic 3D voxel-grid tree models derived from terrestrial LiDAR measurements over two trees were considered. The comparison of DART-simulated Tc from these models with the previous predicted Tc over 0.4–2.5 µm showed three main sources of inaccuracy quoted in order of importance: (1) the global tree geometry shape (mean bias up to 21.5%), (2) the transmittance fraction associated to multiple scattering, Tscat (maximum bias up to 13%), and (3) the degree of realism of the tree representation (mean bias up to 7.5%). Results showed that neglecting Tc leads to very inaccurate reflectance retrieval (mean bias > 0.04), particularly if the background reflectance is high, and in the near and shortwave infrared – NIR and SWIR – due to Tscat. The transmittance fraction associated to the non-intercepted transmitted light, Tdir, can reach up to 95% in the SWIR, and Tscat up to 20% in the NIR. Their spatial contributions computed in the tree shadow have a maximum dispersion of 27% and 8% respectively. Investigating how to approximate Tdir and Tscat spectral and spatial variability along with the most appropriate tree 3D modeling is crucial to improve reflectance retrieval in tree shadows when using atmospheric correction models.


2021 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Quentin Cabanes ◽  
Benaoumeur Senouci ◽  
Amar Ramdane-Cherif

Cyber-Physical Systems (CPSs) are a mature research technology topic that deals with Artificial Intelligence (AI) and Embedded Systems (ES). They interact with the physical world via sensors/actuators to solve problems in several applications (robotics, transportation, health, etc.). These CPSs deal with data analysis, which need powerful algorithms combined with robust hardware architectures. On one hand, Deep Learning (DL) is proposed as the main solution algorithm. On the other hand, the standard design and prototyping methodologies for ES are not adapted to modern DL-based CPS. In this paper, we investigate AI design for CPS around embedded DL. The main contribution of this work is threefold: (1) We define an embedded DL methodology based on a Multi-CPU/FPGA platform. (2) We propose a new hardware design architecture of a Neural Network Processor (NNP) for DL algorithms. The computation time of a feed forward sequence is estimated to 23 ns for each parameter. (3) We validate the proposed methodology and the DL-based NNP using a smart LIDAR application use-case. The input of our NNP is a voxel grid hardware computed from 3D point cloud. Finally, the results show that our NNP is able to process Dense Neural Network (DNN) architecture without bias.


Sign in / Sign up

Export Citation Format

Share Document