Applications and Constructions of Optical Codes With Large Cardinality and Multiple Tree Structures

2014 ◽  
Vol 32 (14) ◽  
pp. 2451-2460 ◽  
Author(s):  
Jun-Cheng Liu ◽  
Guu-Chang Yang ◽  
Houshou Chen ◽  
Wing C. Kwong
2002 ◽  
Vol 716 ◽  
Author(s):  
C. L. Gan ◽  
C. V. Thompson ◽  
K. L. Pey ◽  
W. K. Choi ◽  
F. Wei ◽  
...  

AbstractElectromigration experiments have been carried out on simple Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigrationresistant overlayer in Cu technology, and the possibility of liner rupture at stressed vias lead to significant differences in tree reliabilities in Cu compared to Al.


1981 ◽  
Vol 4 (1) ◽  
pp. 19-34
Author(s):  
Ryszard Danecki

Closure properties of binary ETOL-languages are investigated by means of multiple tree automata. Decidability of the equivalence problem of deterministic binary ETOL-systems is proved.


2021 ◽  
Vol 69 (1) ◽  
pp. 356-365
Author(s):  
Bariscan Karaosmanoglu ◽  
Ozgur Ergul
Keyword(s):  

Author(s):  
Przemyslaw Glowacki ◽  
Miguel Amavel Pinheiro ◽  
Engin Turetken ◽  
Raphael Sznitman ◽  
Daniel Lebrecht ◽  
...  

Author(s):  
Yijun Liu ◽  
Milind Bapat

Some recent development of the fast multipole boundary element method (BEM) for modeling acoustic wave problems in both 2-D and 3-D domains are presented in this paper. First, the fast multipole BEM formulation for 2-D acoustic wave problems based on a dual boundary integral equation (BIE) formulation is presented. Second, some improvements on the adaptive fast multipole BEM for 3-D acoustic wave problems based on the earlier work are introduced. The improvements include adaptive tree structures, error estimates for determining the numbers of expansion terms, refined interaction lists, and others in the fast multipole BEM. Examples involving 2-D and 3-D radiation and scattering problems solved by the developed 2-D and 3-D fast multipole BEM codes, respectively, will be presented. The accuracy and efficiency of the fast multipole BEM results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale acoustic wave problems that are of practical significance.


Sign in / Sign up

Export Citation Format

Share Document