scholarly journals Deep Transfer Learning Method Based on 1D-CNN for Bearing Fault Diagnosis

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun He ◽  
Xiang Li ◽  
Yong Chen ◽  
Danfeng Chen ◽  
Jing Guo ◽  
...  

In mechanical fault diagnosis, it is impossible to collect massive labeled samples with the same distribution in real industry. Transfer learning, a promising method, is usually used to address the critical problem. However, as the number of samples increases, the interdomain distribution discrepancy measurement of the existing method has a higher computational complexity, which may make the generalization ability of the method worse. To solve the problem, we propose a deep transfer learning method based on 1D-CNN for rolling bearing fault diagnosis. First, 1-dimension convolutional neural network (1D-CNN), as the basic framework, is used to extract features from vibration signal. The CORrelation ALignment (CORAL) is employed to minimize marginal distribution discrepancy between the source domain and target domain. Then, the cross-entropy loss function and Adam optimizer are used to minimize the classification errors and the second-order statistics of feature distance between the source domain and target domain, respectively. Finally, based on the bearing datasets of Case Western Reserve University and Jiangnan University, seven transfer fault diagnosis comparison experiments are carried out. The results show that our method has better performance.

Author(s):  
Jiantong Zhao ◽  
Wentao Huang

Abstract In practical bearing fault diagnosis tasks, the available labelled data are often not from the equipment to be diagnosed and cannot cover all manner of working conditions. The adopted data-driven method is required to have a certain degree of cross-domain and cross-working condition transfer learning diagnosis ability. However, limited by the performance of existing transfer learning methods, the potential difference between the source domain and the target domain poses a challenge for the accuracy of transfer diagnosis. In this paper, a cross-working condition data supplement method based on the cycle generative adversarial network (CycleGAN) and a dynamics model is proposed, which can use limited available data to approximate the missing parts of existing data and be used for diagnosis of the target domain. First, we considered the limited experimental data as the target domain, the simulation data corresponding to the working condition as the source domain and used the working condition as the benchmark to constrain the data correspondence between the two datasets. We then used the CycleGAN model to learn the feature mapping from simulation to experiment. Second, based on the working condition of the data to be tested, the corresponding simulation data were input into the trained generator to obtain labeled data with experimental characteristics under the corresponding working conditions, and transferred the dataset as the source domain data to the data to be tested. In the test using self-made simulation and experimental datasets, combined with the transfer learning method based on the probability distribution adaptation, it was shown that the proposed method could effectively improve the diagnostic impact of the single transfer learning method in cross-domain and cross-working conditions when the working condition span was large.


2013 ◽  
Vol 753-755 ◽  
pp. 2290-2296 ◽  
Author(s):  
Wen Tao Huang ◽  
Yin Feng Liu ◽  
Pei Lu Niu ◽  
Wei Jie Wang

In the early fault diagnosis of rolling bearing, the vibration signal is mixed with a lot of noise, resulting in the difficulties in analysis of early weak fault signal. This article introduces resonance-based signal sparse decomposition (RSSD) into rolling bearing fault diagnosis, and studies the fault information contained in high resonance component and low resonance component. This article compares the effect of the two resonance components to extract rolling bearing fault information in four aspects: the amount of fault information, frequency resolution of subbands, sensitivity to noise and immunity to autocorrelation processing. We find that the high resonance component has greater advantage in extraction of rolling bearing fault information, and it is able to indicate rolling bearing failure accurately.


2012 ◽  
Vol 190-191 ◽  
pp. 993-997
Author(s):  
Li Jie Sun ◽  
Li Zhang ◽  
Yong Bo Yang ◽  
Da Bo Zhang ◽  
Li Chun Wu

Mechanical equipment fault diagnosis occupies an important position in the industrial production, and feature extraction plays an important role in fault diagnosis. This paper analyzes various methods of feature extraction in rolling bearing fault diagnosis and classifies them into two big categories, which are methods of depending on empirical rules and experimental trials and using objective methods for screening. The former includes five methods: frequency as the characteristic parameters, multi-sensor information fusion method, rough set attribute reduction method, "zoom" method and vibration signal as the characteristic parameters. The latter includes two methods: sensitivity extraction and data mining methods to select attributes. Currently, selection methods of feature parameters depend heavily on empirical rules and experimental trials, thus extraction results are be subjected to restriction from subjective level, feature extraction in the future will develop toward objective screening direction.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Tao ◽  
Yilun Liu ◽  
Dalian Yang

In the rolling bearing fault diagnosis, the vibration signal of single sensor is usually nonstationary and noisy, which contains very little useful information, and impacts the accuracy of fault diagnosis. In order to solve the problem, this paper presents a novel fault diagnosis method using multivibration signals and deep belief network (DBN). By utilizing the DBN’s learning ability, the proposed method can adaptively fuse multifeature data and identify various bearing faults. Firstly, multiple vibration signals are acquainted from various fault bearings. Secondly, some time-domain characteristics are extracted from original signals of each individual sensor. Finally, the features data of all sensors are put into the DBN and generate an appropriate classifier to complete fault diagnosis. In order to demonstrate the effectiveness of multivibration signals, experiments are carried out on the individual sensor with the same conditions and procedure. At the same time, the method is compared with SVM, KNN, and BPNN methods. The results show that the DBN-based method is able to not only adaptively fuse multisensor data, but also obtain higher identification accuracy than other methods.


2014 ◽  
Vol 556-562 ◽  
pp. 2677-2680 ◽  
Author(s):  
Ling Jie Meng ◽  
Jia Wei Xiang

A new rolling bearing fault diagnosis approach is proposed. The original vibration signal is purified using the second generation wavelet denoising. The purified signal is further decomposed by an improved ensemble empirical mode decomposition (EEMD) method. A new selection criterion, including correlation analysis and the first two intrinsic mode functions (IMFs) with the maximum energy, is put forward to eliminate the pseudo low-frequency components. Experimental investigation show that the rolling bearing fault features can be effectively extracted.


Measurement ◽  
2020 ◽  
Vol 151 ◽  
pp. 107227 ◽  
Author(s):  
Zhenghong Wu ◽  
Hongkai Jiang ◽  
Ke Zhao ◽  
Xingqiu Li

Sign in / Sign up

Export Citation Format

Share Document