Real-Time Low-Cost Drift Compensation for Chemical Sensors Using a Deep Neural Network with Hadamard Transform and Additive Layers

2021 ◽  
pp. 1-1
Author(s):  
Diaa Badawi ◽  
Agamyrat Agambayev ◽  
Sule Ozev ◽  
A. Enis Cetin
2021 ◽  
Vol 3 ◽  
Author(s):  
James Ren Lee ◽  
Linda Wang ◽  
Alexander Wong

While recent advances in deep learning have led to significant improvements in facial expression classification (FEC), a major challenge that remains a bottleneck for the widespread deployment of such systems is their high architectural and computational complexities. This is especially challenging given the operational requirements of various FEC applications, such as safety, marketing, learning, and assistive living, where real-time requirements on low-cost embedded devices is desired. Motivated by this need for a compact, low latency, yet accurate system capable of performing FEC in real-time on low-cost embedded devices, this study proposes EmotionNet Nano, an efficient deep convolutional neural network created through a human-machine collaborative design strategy, where human experience is combined with machine meticulousness and speed in order to craft a deep neural network design catered toward real-time embedded usage. To the best of the author’s knowledge, this is the very first deep neural network architecture for facial expression recognition leveraging machine-driven design exploration in its design process, and exhibits unique architectural characteristics such as high architectural heterogeneity and selective long-range connectivity not seen in previous FEC network architectures. Two different variants of EmotionNet Nano are presented, each with a different trade-off between architectural and computational complexity and accuracy. Experimental results using the CK + facial expression benchmark dataset demonstrate that the proposed EmotionNet Nano networks achieved accuracy comparable to state-of-the-art FEC networks, while requiring significantly fewer parameters. Furthermore, we demonstrate that the proposed EmotionNet Nano networks achieved real-time inference speeds (e.g., >25 FPS and >70 FPS at 15 and 30 W, respectively) and high energy efficiency (e.g., >1.7 images/sec/watt at 15 W) on an ARM embedded processor, thus further illustrating the efficacy of EmotionNet Nano for deployment on embedded devices.


Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 234 ◽  
Author(s):  
Hyun Yoo ◽  
Soyoung Han ◽  
Kyungyong Chung

Recently, a massive amount of big data of bioinformation is collected by sensor-based IoT devices. The collected data are also classified into different types of health big data in various techniques. A personalized analysis technique is a basis for judging the risk factors of personal cardiovascular disorders in real-time. The objective of this paper is to provide the model for the personalized heart condition classification in combination with the fast and effective preprocessing technique and deep neural network in order to process the real-time accumulated biosensor input data. The model can be useful to learn input data and develop an approximation function, and it can help users recognize risk situations. For the analysis of the pulse frequency, a fast Fourier transform is applied in preprocessing work. With the use of the frequency-by-frequency ratio data of the extracted power spectrum, data reduction is performed. To analyze the meanings of preprocessed data, a neural network algorithm is applied. In particular, a deep neural network is used to analyze and evaluate linear data. A deep neural network can make multiple layers and can establish an operation model of nodes with the use of gradient descent. The completed model was trained by classifying the ECG signals collected in advance into normal, control, and noise groups. Thereafter, the ECG signal input in real time through the trained deep neural network system was classified into normal, control, and noise. To evaluate the performance of the proposed model, this study utilized a ratio of data operation cost reduction and F-measure. As a result, with the use of fast Fourier transform and cumulative frequency percentage, the size of ECG reduced to 1:32. According to the analysis on the F-measure of the deep neural network, the model had 83.83% accuracy. Given the results, the modified deep neural network technique can reduce the size of big data in terms of computing work, and it is an effective system to reduce operation time.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2021 ◽  
pp. 1-1
Author(s):  
Duc M. Le ◽  
Max L. Greene ◽  
Wanjiku A. Makumi ◽  
Warren E. Dixon

Sign in / Sign up

Export Citation Format

Share Document