scholarly journals A Forecasting Approach to Online Change Detection in Land Cover Time Series

Author(s):  
Willem C. Olding ◽  
Jan C. Olivier ◽  
Brian P. Salmon ◽  
Waldo Kleynhans
Author(s):  
Michelle Li Ern Ang ◽  
Dirk Arts ◽  
Danielle Crawford ◽  
Bonifacio V. Labatos ◽  
Khanh Duc Ngo ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 1251 ◽  
Author(s):  
Boyu Liu ◽  
Jun Chen ◽  
Jiage Chen ◽  
Weiwei Zhang

Spectral and NDVI values have been used to calculate the change magnitudes of land cover, but may result in many pseudo-changes because of inter-class variance. Recently, the shape information of spectral or NDVI curves such as direction, angle, gradient, or other mathematical indicators have been used to improve the accuracy of land cover change detection. However, these measurements, in terms of the single shape features, can hardly capture the complete trends of curves affected by the unsynchronized phenology. Therefore, the calculated change magnitudes are indistinct such that changes and no-changes have a low contrast. This problem has prevented traditional change detection methods from achieving a higher accuracy using bi-temporal images or NDVI time series. In this paper, a multiple shape parameters-based change detection method is proposed by combining the spectral correlation operator and the shape features of NDVI temporal curves (phase angle cumulant, baseline cumulant, relative cumulation rate, and zero-crossing rate). The change magnitude is derived by integrating all the inter-annual differences of these shape parameters. The change regions are discriminated by an automated threshold selection method known as histogram concavity analysis. The results showed that the mean differences in the change magnitudes of the proposed method between 2100 changed and 2523 unchanged pixels was 32%, the overall accuracy was approximately 88%, and the kappa coefficient was 0.76. A comparative analysis was conducted with bi-temporal image-based methods and NDVI time series-based methods, and we demonstrate that the proposed method is more effective and robust than traditional methods in achieving high-contrast change magnitudes and accuracy.


2018 ◽  
Vol 11 ◽  
pp. 117862211775160 ◽  
Author(s):  
Gebiaw T Ayele ◽  
Aschalew K Tebeje ◽  
Solomon S Demissie ◽  
Mulugeta A Belete ◽  
Mengistu A Jemberrie ◽  
...  

Land use planners require up-to-date and spatially accurate time series land resources information and changing pattern for future management. As a result, assessing the status of land cover change due to population growth and arable expansion, land degradation and poor resource management, partial implementation of policy strategies, and poorly planned infrastructural development is essential. Thus, the objective of the study was to quantify the spatiotemporal dynamics of land use land cover change between 1995 and 2014 using 5 multi-temporal cloud-free Landsat Thematic Mapper images. The maximum likelihood (ML)-supervised classification technique was applied to create signature classes for significant land cover categories using means and variances of the training data to estimate the probability that a pixel is a member of a class. The final Bayesian ML classification resulted in 12 major land cover units, and the spatiotemporal change was quantified using post-classification and statistical change detection techniques. For a period of 20 years, there was a continuously increasing demand for arable areas, which can be represented by an exponential growth model. Excepting the year 2009, the built-up area has shown a steady increase due to population growth and its need for infrastructure development. There was nearly a constant trend for water bodies with a change in slope significantly less than +0.01%. The 2014 land cover change statistics revealed that the area was mainly covered by cultivated, wood, bush, shrub, grass, and forest land mapping units accounting nearly 63%, 12%, 8%, 6%, 4%, and 2% of the total, respectively. Land cover change with agro-climatic zones, soil types, and slope classes was common in most part of the area and the conversion of grazing land into plantation trees and closure area development were major changes in the past 20 years.


Sign in / Sign up

Export Citation Format

Share Document