scholarly journals Sparse Representation for Target Detection in Hyperspectral Imagery

2011 ◽  
Vol 5 (3) ◽  
pp. 629-640 ◽  
Author(s):  
Yi Chen ◽  
Nasser M. Nasrabadi ◽  
Trac D. Tran
2020 ◽  
Vol 12 (23) ◽  
pp. 3991
Author(s):  
Xiaobin Zhao ◽  
Wei Li ◽  
Mengmeng Zhang ◽  
Ran Tao ◽  
Pengge Ma

In recent years, with the development of compressed sensing theory, sparse representation methods have been concerned by many researchers. Sparse representation can approximate the original image information with less space storage. Sparse representation has been investigated for hyperspectral imagery (HSI) detection, where approximation of testing pixel can be obtained by solving l1-norm minimization. However, l1-norm minimization does not always yield a sufficiently sparse solution when a dictionary is not large enough or atoms present a certain level of coherence. Comparatively, non-convex minimization problems, such as the lp penalties, need much weaker incoherence constraint conditions and may achieve more accurate approximation. Hence, we propose a novel detection algorithm utilizing sparse representation with lp-norm and propose adaptive iterated shrinkage thresholding method (AISTM) for lp-norm non-convex sparse coding. Target detection is implemented by representation of the all pixels employing homogeneous target dictionary (HTD), and the output is generated according to the representation residual. Experimental results for four real hyperspectral datasets show that the detection performance of the proposed method is improved by about 10% to 30% than methods mentioned in the paper, such as matched filter (MF), sparse and low-rank matrix decomposition (SLMD), adaptive cosine estimation (ACE), constrained energy minimization (CEM), one-class support vector machine (OC-SVM), the original sparse representation detector with l1-norm, and combined sparse and collaborative representation (CSCR).


Optik ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 5633-5640 ◽  
Author(s):  
Chunhui Zhao ◽  
Wei Li ◽  
Xiaohui Li ◽  
Bin Qi

2018 ◽  
Vol 232 ◽  
pp. 02054
Author(s):  
Cheng Baozhi

The research of anomaly target detection algorithm in hyperspectral imagery is a hot issue, which has important research value. In order to overcome low efficiency of current anomaly target detection in hyperspectral image, an anomaly detection algorithm for hyperspectral images based on wavelet transform and sparse representation was proposed. Firstly, two-dimensional discrete wavelet transform is used to denoise the hyperspectral image, and the new hyperspectral image data are obtained. Then, the results of anomaly target detection are obtained by using sparse representation theory. The real AVIRIS hyperspectral imagery data sets are used in the experiments. The results show that the detection accuracy and false alarm rate of the propoesd algorithm are better than RX and KRX algorithm.


2017 ◽  
Author(s):  
Chunhua Dong ◽  
Masoud Naghedolfeizi ◽  
Dawit Aberra ◽  
Hao Qiu ◽  
Xiangyan Zeng

2020 ◽  
Vol 12 (17) ◽  
pp. 2783
Author(s):  
Zhaoxu Li ◽  
Qiang Ling ◽  
Jing Wu ◽  
Zhengyan Wang ◽  
Zaiping Lin

At present, small dim moving target detection in hyperspectral imagery sequences is mainly based on anomaly detection (AD). However, most conventional detection algorithms only utilize the spatial spectral information and rarely employ the temporal spectral information. Besides, multiple targets in complex motion situations, such as multiple targets at different velocities and dense targets on the same trajectory, are still challenges for moving target detection. To address these problems, we propose a novel constrained sparse representation-based spatio-temporal anomaly detection algorithm that extends AD from the spatial domain to the spatio-temporal domain. Our algorithm includes a spatial detector and a temporal detector, which play different roles in moving target detection. The former can suppress moving background regions, and the latter can suppress non-homogeneous background and stationary objects. Two temporal background purification procedures maintain the effectiveness of the temporal detector for multiple targets in complex motion situations. Moreover, the smoothing and fusion of the spatial and temporal detection maps can adequately suppress background clutter and false alarms on the maps. Experiments conducted on a real dataset and a synthetic dataset show that the proposed algorithm can accurately detect multiple targets with different velocities and dense targets with the same trajectory and outperforms other state-of-the-art algorithms in high-noise scenarios.


Sign in / Sign up

Export Citation Format

Share Document