RBCRP: A Routing Approach Based on Crowded Rendezvous Points in Delay Tolerant Networks

Author(s):  
Reza Besharati ◽  
Samira Esfandiari ◽  
Vahid Khajevand ◽  
Mohammad Hossein Rezvani
2012 ◽  
Vol E95.B (9) ◽  
pp. 2769-2773 ◽  
Author(s):  
Xuanya LI ◽  
Linlin CI ◽  
Wenbing JIN

2009 ◽  
Vol E92-B (12) ◽  
pp. 3927-3930 ◽  
Author(s):  
Jeonggyu KIM ◽  
Jongmin SHIN ◽  
Dongmin YANG ◽  
Cheeha KIM

2019 ◽  
Vol E102.B (12) ◽  
pp. 2183-2198
Author(s):  
Dawei YAN ◽  
Cong LIU ◽  
Peng YOU ◽  
Shaowei YONG ◽  
Dongfang GUAN ◽  
...  

2012 ◽  
Vol E95.B (11) ◽  
pp. 3585-3589 ◽  
Author(s):  
Seok-Kap KO ◽  
Hakjeon BANG ◽  
Kyungran KANG ◽  
Chang-Soo PARK

2013 ◽  
Vol E96.B (6) ◽  
pp. 1435-1443 ◽  
Author(s):  
Shuang QIN ◽  
Gang FENG ◽  
Wenyi QIN ◽  
Yu GE ◽  
Jaya Shankar PATHMASUNTHARAM

2011 ◽  
Author(s):  
MoonJeong Chang ◽  
Ing-Ray Chen ◽  
Fenye Bao ◽  
Jin-Hee Cho

2021 ◽  
Vol 1 (1) ◽  
pp. 1-37
Author(s):  
Michela Lorandi ◽  
Leonardo Lucio Custode ◽  
Giovanni Iacca

Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant Networks (DTNs). These are a kind of mobile ad hoc networks made of, e.g., (possibly, unmanned) vehicles and humans where, despite a lack of continuous connectivity, data must be transmitted while the network conditions change due to the nodes’ mobility. In these contexts, routing is NP-hard and is usually solved by heuristic “store and forward” replication-based approaches, where multiple copies of the same message are moved and stored across nodes in the hope that at least one will reach its destination. Still, the existing routing protocols produce relatively low delivery probabilities. Here, we genetically improve two routing protocols widely adopted in DTNs, namely, Epidemic and PRoPHET, in the attempt to optimize their delivery probability. First, we dissect them into their fundamental components, i.e., functionalities such as checking if a node can transfer data, or sending messages to all connections. Then, we apply Genetic Improvement (GI) to manipulate these components as terminal nodes of evolving trees. We apply this methodology, in silico, to six test cases of urban networks made of hundreds of nodes and find that GI produces consistent gains in delivery probability in four cases. We then verify if this improvement entails a worsening of other relevant network metrics, such as latency and buffer time. Finally, we compare the logics of the best evolved protocols with those of the baseline protocols, and we discuss the generalizability of the results across test cases.


Sign in / Sign up

Export Citation Format

Share Document