Prediction And Optical Measurement Of The Acoustic Properties Of Liquid Mixtures

2005 ◽  
Author(s):  
R. Bonney ◽  
C.C. Davis
1993 ◽  
Vol 115 (4) ◽  
pp. 665-675 ◽  
Author(s):  
C. M. Atkinson ◽  
H. K. Kyto¨maa

Ultrasound as a technique for interrogating two-phase mixtures has the advantages of being nonintrusive, it has a very high frequency response, and is able to penetrate typically opaque highly concentrated mixtures. There exists, however, an inherent compromise in the choice of the frequency of the ultrasound between maximizing spatial resolution and ensuring adequate beam penetration. To this end, the propagation of ultrasound in solid-liquid mixtures has been investigated experimentally for a range of frequencies and concentrations of the dispersed phase. The measured attenuation has been shown to depend roughly linearly on frequency for 0.1<kr<0.75 (where the wavenumber k = 2π/λ, and λ and r are the wavelength and particle radius, respectively), and quadratically for kr > 0.75. As a function of solids concentration, the attenuation displays a maximum at a solids fraction of about 30 percent for the present system of silica beads in water. This robust and reproducible result contradicts models of attenuation that rely on linear superposition of single particle effects. The intensity field produced by a circular disk transducer in a two phase medium at kr~1 shows excellent agreement with the Rayleigh integral with a modified wavenumber and attenuation parameter, and it allows for the prediction of the transducer beam geometry in two phase mixtures for a wide range of frequencies and solids fractions. The limitations of ultrasonic wave propagation as a nonintrusive diagnostic technique, in terms of spatial resolution, have been discussed. Acknowledging these limitations, an ultrasonic instrument for determining the velocity of moving particles at or near maximum packing was built. Preliminary results from this prototypical ultrasonic Doppler velocimeter show good agreement with observations of the settling velocity of silica beads at high concentrations.


1996 ◽  
Vol 104 (17) ◽  
pp. 6881-6892 ◽  
Author(s):  
K. J. Zhang ◽  
M. E. Briggs ◽  
R. W. Gammon ◽  
J. V. Sengers

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sergio Pérez-López ◽  
José Miguel Fuster ◽  
Igor V. Minin ◽  
Oleg V. Minin ◽  
Pilar Candelas

Abstract In this work, we present a configurable spherical lens for underwater focusing applications, which consists on a hollow ABS container filled with a liquid mixture. Two miscible liquids with different sound speeds are required to implement this novel configurable lens. We show that by adjusting the mixing ratio between the volumes of both liquids, the sound speed of the liquid mixture can be accurately selected. This results in a modification of the acoustic jet properties and a continuous tuning on the lens focal length. This procedure can be fully automatized providing a dynamic control mechanism that can shift the lens focal length to any desired value inside a continuous range in both directions. Depending on the acoustic properties of the selected liquids, subwavelength resolution or even beyond the diffraction limit resolution can be achieved. We provide experimental measurements for ethanol-water mixtures achieving subwavelength resolution for a certain focal length ranging between 34.6 and 42.8 mm.


2021 ◽  
Vol 95 (S1) ◽  
pp. S56-S61
Author(s):  
Aruna P. Maharolkar ◽  
A. G. Murugkar ◽  
P. W. Khirade ◽  
S. C. Mehrota

1988 ◽  
Vol 16 ◽  
pp. 31-39
Author(s):  
Bethann Moffet ◽  
Rebekah Pindzola
Keyword(s):  

1994 ◽  
Vol 04 (C5) ◽  
pp. C5-705-C5-708
Author(s):  
V. PREOBRAZHENSKY ◽  
I. DUBENKO ◽  
N. ECONOMOV ◽  
A. ZAIKIN

Sign in / Sign up

Export Citation Format

Share Document