scholarly journals Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sergio Pérez-López ◽  
José Miguel Fuster ◽  
Igor V. Minin ◽  
Oleg V. Minin ◽  
Pilar Candelas

Abstract In this work, we present a configurable spherical lens for underwater focusing applications, which consists on a hollow ABS container filled with a liquid mixture. Two miscible liquids with different sound speeds are required to implement this novel configurable lens. We show that by adjusting the mixing ratio between the volumes of both liquids, the sound speed of the liquid mixture can be accurately selected. This results in a modification of the acoustic jet properties and a continuous tuning on the lens focal length. This procedure can be fully automatized providing a dynamic control mechanism that can shift the lens focal length to any desired value inside a continuous range in both directions. Depending on the acoustic properties of the selected liquids, subwavelength resolution or even beyond the diffraction limit resolution can be achieved. We provide experimental measurements for ethanol-water mixtures achieving subwavelength resolution for a certain focal length ranging between 34.6 and 42.8 mm.

2014 ◽  
Vol 10 ◽  
pp. 27-31
Author(s):  
R.Kh. Bolotnova ◽  
U.O. Agisheva ◽  
V.A. Buzina

The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingting Du ◽  
Zixin Xiong ◽  
Luis Delgado ◽  
Weizhi Liao ◽  
Joseph Peoples ◽  
...  

AbstractThermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiang Li ◽  
Jianzheng Liu ◽  
Jessica Baron ◽  
Khoa Luu ◽  
Eric Patterson

AbstractRecent attention to facial alignment and landmark detection methods, particularly with application of deep convolutional neural networks, have yielded notable improvements. Neither these neural-network nor more traditional methods, though, have been tested directly regarding performance differences due to camera-lens focal length nor camera viewing angle of subjects systematically across the viewing hemisphere. This work uses photo-realistic, synthesized facial images with varying parameters and corresponding ground-truth landmarks to enable comparison of alignment and landmark detection techniques relative to general performance, performance across focal length, and performance across viewing angle. Recently published high-performing methods along with traditional techniques are compared in regards to these aspects.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Ahmet Aydın ◽  
Cemil Keskinoğlu ◽  
Umut Kökbaş ◽  
Abdullah Tuli

Ultrasound is used in many analysis studies, including liquid mixtures. Many mixtures are analyzed to understand their contents or properties in different situations. One of these mixtures is the ethanol-water combination. In this study, the amount of ethanol in the liquid mixture was determined noninvasively by the ultrasonic method using a microcontroller-based system. The results show that the measurements obtained were within the p<0.05 confidence interval. The characteristics evaluation of the system shows that the system can detect ethanol concentration as low as 0.552 g/L, thus the system has a broad and linear determination range for ethanol. Although the system is calibrated and tested with ethanol-water mixture, it can be used for any mixture that changes density related to the substance concentration, including different alcohols which are soluble in water (glycols, glycoethers, etc.) or any other material (solid or liquid) which is soluble in alcohol or different liquid solvent. The system has so many advantages that make it possible to use comfortably in many areas where the amount of ethanol contained in the mixture is essential. These advantages are the high accuracy and sensitivity, being noninvasive, portable, and not having a destructive effect on the substance.   Resumen. El ultrasonido es utilizado en muchos estudios incluyendo las mezclas liquidas. Se analizan varias mezclas para entender sus contenidos y propiedades en diferentes situaciones. Una de estas mezclas es la combinación de etanol-agua. En este estudio, la cantidad de etanol en la mezcla líquida fue determinada de manera no invasiva con el método ultrasonico utilizando un sistema basado en microcontrolador. Los resultados muestran que las mediciones obtenidas se encontraban dentro de un intervalo de confianza de p<0.05. Las características de evaluación del sistema muestran que se puede detectar etanol a una concentración tan baja como 0.552 g/L, por lo tanto, el sistema tiene un rango de determinación linear amplio para etanol. Aunque el sistema se calibra y prueba con mezcla de etanol-agua, puede ser utilizado para cualquier mezcla que cambia de densidad en relación con la concentración de la substancia, incluyendo diferentes alcoholes que son solubles en agua (glicoles, glicoeteres, etc) o cualquier otro material (sólido o líquido) que sea soluble en alcohol o en algún solvente líquido diferente. El sistema tiene muchas ventajas que hacen posible su utilización en muchas áreas donde la cantidad de etanol contenida en la mezcla es esencial. Estas ventajas son de alta precisión y sensiblididad al ser no invasivo, portátil y al no tener un efecto destructivo sobre la sustancia.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015001
Author(s):  
Majid Babaiy Tooski ◽  
Abbas Maleki ◽  
Abdolah Eslami Majd ◽  
Hassan Ebadian

Abstract In this paper, a Tm:fiber laser pumped Ho:YLF laser is simulated. The absorption efficiency, optimum crystal length, and optical resonator are analytically studied and simulated using LASCAD software, and the atomic-level degeneracies are considered in evaluating the absorption efficiency. In this way, the absorption efficiencies of 65% and 87% are obtained for single-pass 30 mm Ho:YLF crystal with doping concentration 0.5% and 1% respectively. These calculated efficiencies are verified by our experimental measurements and they coincide with acceptable errors. To estimate a proper length for the Ho:YLF crystal with specified doping concentration, the up-conversion, and the reabsorption effects are considered. As a result, we find the 30 mm length crystal is suited for reducing the absorption threshold and prohibiting reabsorption while saturation is controlled. The threshold power and slope efficiency for 65 W pumped powers are calculated by LASCAD software, and the thermal lens focal length of −665 mm is obtained. For a nearly constant beam width inside the cavity and suitable beam overlap efficiency, a concave-concave configuration is chosen for the optical resonator. In the continuous-wave operation, the output power is funded to be 38.4 W and the slope efficiency would be 66%.


Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 212-215
Author(s):  
许江华 Xu Jianghua ◽  
朱岚 Zhu Lan ◽  
陈家璧 Chen Jiabi ◽  
庄松林 Zhuang Songlin

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5501
Author(s):  
Yang Bai ◽  
Jianlin Li ◽  
Rongwei Zha ◽  
Ying Wang ◽  
Guangzhi Lei

The optical system is one of the core components for star sensors, whose imaging quality directly influences the performance of star sensors for star detection, thereby determining the attitude control accuracy of spacecrafts. Here, we report a new type of optical system with a catadioptric structure and a large entrance pupil diameter for a 15-magnitude star sensor. It consists of an improved Cassegrain system (R-C system), an aperture correction spherical lens group and a field of view correction spherical lens group. By embedding the secondary mirror of the R-C system into the output surface of the negative spherical lens of the aperture correction spherical lens group, the blocking of incident light is eliminated from the secondary mirror holder. After the structure optimization, the catadioptric optical system (COS) had a spectral range of 450 nm–950 nm, an entrance pupil diameter of 250 mm, a half-diagonal field of view of 1.4° and a focal length of 390 mm. By using theoretical calculations and experimental measurements, it was verified that the COS, with the ability to correct astigmatism, lateral color and distortion, can fulfill the detection of 15-magnitude dark stars.


1976 ◽  
Vol 54 (17) ◽  
pp. 1774-1780 ◽  
Author(s):  
Pierre-André Bélanger ◽  
Marc Rioux

A spherical lens and an axicon are combined to form an optical system producing a ring-shaped focalization pattern. The diameter of the ring in the focal plane depends on the angle of the axicon, on its dielectric index, and on the focal length of the spherical lens. The diffractional analysis of the lens–axicon combination, when illuminated by a plane wave, is presented. In particular, we show that, when the aperture is large, the Kirchhoff–Fresnel integral can be reduced to a known function. A close examination of the function reveals that the diffractional width of the ring is equal to approximately twice the width of the Airy pattern of the lens alone. This type of focalization is well suited for a system where a laser beam is used to drill holes.


1996 ◽  
Vol 50 (7) ◽  
pp. 849-860 ◽  
Author(s):  
Thomas F. Cooney ◽  
H. Trey Skinner ◽  
S. M. Angel

We compare relative performances of flat-tipped, beveled (two-fiber and six-around-one), and single-lensed focused fiber-optic Raman probes and, where feasible, evaluate the utility of optical filters for reducing fiber background. The sensitivity profile of each probe is determined by measuring the relative intensity of light backscattered off a flat surface as a function of distance from the probe tip. The experimental results are compared with a simple light-cone-overlap model incorporating fiber numerical aperture, fiber and immersion medium refractive indices, separation between excitation and collection fibers, number of fibers, and fiber bevel angle and/or lens focal length. The model and sensitivity profiles are used to interpret the sampling regions for Raman spectra obtained by using each of the probes with a clear, transparent sample (single-crystal sparry calcite), a white, partially transparent sample (acetaminophen tablet), and a set of organic liquids of varying refractive index. The sensitivity of the tested commercial lensed probe drops off symmetrically about the focal point. For both solid samples, the intensity of fiber background follows a profile determined primarily by laser backscattering off the surface, whereas the sample Raman signal follows a profile dependent upon sampling depth.


Sign in / Sign up

Export Citation Format

Share Document