Density-Adaptive and Geometry-Aware Registration of TLS Point Clouds Based on Coherent Point Drift

2020 ◽  
Vol 17 (9) ◽  
pp. 1628-1632 ◽  
Author(s):  
Yufu Zang ◽  
Roderik Lindenbergh ◽  
Bisheng Yang ◽  
Haiyan Guan
Author(s):  
Shenman Zhang ◽  
Pengjie Tao

Recent advances in open data initiatives allow us to free access to a vast amount of open LiDAR data in many cities. However, most of these open LiDAR data over cities are acquired by airborne scanning, where the points on façades are sparse or even completely missing due to the viewpoint and object occlusions in the urban environment. Integrating other sources of data, such as ground images, to complete the missing parts is an effective and practical solution. This paper presents an approach for improving open LiDAR data coverage on building façades by using point cloud generated from ground images. A coarse-to-fine strategy is proposed to fuse these two different sources of data. Firstly, the façade point cloud generated from terrestrial images is initially geolocated by matching the SFM camera positions to their GPS meta-information. Next, an improved Coherent Point Drift algorithm with normal consistency is proposed to accurately align building façades to open LiDAR data. The significance of the work resides in the use of 2D overlapping points on the outline of buildings instead of limited 3D overlap between the two point clouds and the achievement to a reliable and precise registration under possible incomplete coverage and ambiguous correspondence. Experiments show that the proposed approach can significantly improve the façades details of buildings in open LiDAR data and improving registration accuracy from up to 10 meters to less than half a meter compared to classic registration methods.


Author(s):  
Y. Zang ◽  
R. C. Lindenbergh

<p><strong>Abstract.</strong> Processing unorganized 3D point clouds is highly desirable, especially for the applications in complex scenes (such as: mountainous or vegetation areas). Registration is the precondition to obtain complete surface information of complex scenes. However, for complex environment, the automatic registration of TLS point clouds is still a challenging problem. In this research, we propose an automatic registration for TLS point clouds of complex scenes based on coherent point drift (CPD) algorithm combined with a robust covariance descriptor. Out method consists of three steps: the construction of the covariance descriptor, uniform sampling of point clouds, and CPD optimization procedures based on Expectation-Maximization (EM algorithm). In the first step, we calculate a feature vector to construct a covariance matrix for each point based on the estimated normal vectors. In the subsequent step, to ensure efficiency, we use uniform sampling to obtain a small point set from the original TLS data. Finally, we form an objective function combining the geometric information described by the proposed descriptor, and optimize the transformation iteratively by maximizing the likelihood function. The experimental results on the TLS datasets of various scenes demonstrate the reliability and efficiency of the proposed method. Especially for complex environments with disordered vegetation or point density variations, this method can be much more efficient than original CPD algorithm.</p>


2019 ◽  
Vol 11 (4) ◽  
pp. 420 ◽  
Author(s):  
Shenman Zhang ◽  
Pengjie Tao ◽  
Lei Wang ◽  
Yaolin Hou ◽  
Zhihua Hu

Recent open data initiatives allow free access to a vast amount of light detection and ranging (LiDAR) data in many cities. However, most open LiDAR data of cities are acquired by airborne scanning, where points on building façades are sparse or even completely missing due to occlusions in the urban environment, leading to the absence of façade details. This paper presents an approach for improving the LiDAR data coverage on building façades by using point cloud generated from ground images. A coarse-to-fine strategy is proposed to fuse these two-point clouds of different sources with very limited overlaps. First, the façade point cloud generated from ground images is leveled by adjusting the facade normal to perpendicular to the upright direction. Then leveling façade point cloud is geolocated by alignment between images GPS data and their structure from motion (SfM) coordinates. Next, a modified coherent point drift algorithm with (surface) normal consistency is proposed to accurately align the façade point cloud to the LiDAR data. The significance of this work resides in the use of 2D overlapping points on the building outlines instead of the limited 3D overlap between the two-point clouds. This way we can still achieve reliable and precise registration under incomplete coverage and ambiguous correspondence. Experiments show that the proposed approach can significantly improve the façade details in open LiDAR data, and achieve 2 to 10 times higher registration accuracy, when compared to classic registration methods.


2021 ◽  
Author(s):  
Guangrun Xu ◽  
Jianmin Huang ◽  
Yueni Lu

Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Author(s):  
Alexandra Getmanskaya ◽  
◽  
Dmitry Lachinov ◽  
Vadim Turlapov ◽  
◽  
...  
Keyword(s):  

2020 ◽  
Vol 28 (10) ◽  
pp. 2301-2310
Author(s):  
Chun-kang ZHANG ◽  
◽  
Hong-mei LI ◽  
Xia ZHANG

Sign in / Sign up

Export Citation Format

Share Document