covariance descriptor
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 15)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2107 (1) ◽  
pp. 012007
Author(s):  
Mohd Fauzi Abu Hassan ◽  
Azurahisham Sah Pri ◽  
Zakiah Ahmad ◽  
Tengku Mohd Azahar Tuan Dir

Abstract This paper investigated single target tracking of arbitrary objects. Tracking is a difficult problem due to a variety of challenges such as scale variation, motion, background clutter, illumination etc. To achieve better tracking performance under these severe conditions, this paper proposed covariance descriptor based on multi-layer instance search region. Our results show that the proposed approach significantly improves the performance in term of centre location error (in pixels) compared to covariance descriptor with using a fixed bounding box. From this work, it is believed that we have constructed a great solution in choosing best layer for this descriptor. This will be addressed in the next future work such as consider target motion during tracking.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xi Liu ◽  
Peng Yang ◽  
Zengrong Zhan ◽  
Zhengming Ma

The region covariance descriptor (RCD), which is known as a symmetric positive definite (SPD) matrix, is commonly used in image representation. As SPD manifolds have a non-Euclidean geometry, Euclidean machine learning methods are not directly applicable to them. In this work, an improved covariance descriptor called the hybrid region covariance descriptor (HRCD) is proposed. The HRCD incorporates the mean feature information into the RCD to improve the latter’s discriminative performance. To address the non-Euclidean properties of SPD manifolds, this study also proposes an algorithm called the Hilbert-Schmidt independence criterion subspace learning (HSIC-SL) for SPD manifolds. The HSIC-SL algorithm is aimed at improving classification accuracy. This algorithm is a kernel function that embeds SPD matrices into the reproducing kernel Hilbert space and further maps them to a linear space. To make the mapping consider the correlation between SPD matrices and linear projection, this method introduces global HSIC maximization to the model. The proposed method is compared with existing methods and is proved to be highly accurate and valid by classification experiments on the HRCD and HSIC-SL using the COIL-20, ETH-80, QMUL, face data FERET, and Brodatz datasets.


Author(s):  
Mohd Fauzi Abu Hassan ◽  
Azurahisham Sah Pri ◽  
Zakiah Ahmad ◽  
Tengku Mohd Azahar Tuan Dir

Author(s):  
Y. Zang ◽  
R. C. Lindenbergh

<p><strong>Abstract.</strong> Processing unorganized 3D point clouds is highly desirable, especially for the applications in complex scenes (such as: mountainous or vegetation areas). Registration is the precondition to obtain complete surface information of complex scenes. However, for complex environment, the automatic registration of TLS point clouds is still a challenging problem. In this research, we propose an automatic registration for TLS point clouds of complex scenes based on coherent point drift (CPD) algorithm combined with a robust covariance descriptor. Out method consists of three steps: the construction of the covariance descriptor, uniform sampling of point clouds, and CPD optimization procedures based on Expectation-Maximization (EM algorithm). In the first step, we calculate a feature vector to construct a covariance matrix for each point based on the estimated normal vectors. In the subsequent step, to ensure efficiency, we use uniform sampling to obtain a small point set from the original TLS data. Finally, we form an objective function combining the geometric information described by the proposed descriptor, and optimize the transformation iteratively by maximizing the likelihood function. The experimental results on the TLS datasets of various scenes demonstrate the reliability and efficiency of the proposed method. Especially for complex environments with disordered vegetation or point density variations, this method can be much more efficient than original CPD algorithm.</p>


Sign in / Sign up

Export Citation Format

Share Document